-
Notifications
You must be signed in to change notification settings - Fork 22.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[halide-backend] Initial implementation of HalideKernel and HalideScheduling #126417
Conversation
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/126417
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit 20c7437 with merge base bc8883a (): This comment was automatically generated by Dr. CI and updates every 15 minutes. |
ghstack-source-id: 227c314f43e869d8863814d83cb7dbc077b2783e Pull Request resolved: #126417
ghstack-source-id: 77b1d63cd88e04b737fe9ff5652a882becdca2f6 Pull Request resolved: #126417
ghstack-source-id: 6934e15117b649c40cd104248ebb299360da0f0b Pull Request resolved: #126417
ghstack-source-id: af65a4e9b1c52966233a70892195ba5c6d4f3402 Pull Request resolved: #126417
ghstack-source-id: 7290fcc2d09170299f3dab83a6491e4318f6ccca Pull Request resolved: pytorch#126417
This puts the halide runtime in a global shared object, rather than copying it to each kernel. Having many copies of the runtime causes many issues with cuda. Pull Request resolved: #129025 Approved by: https://github.com/shunting314, https://github.com/eellison ghstack dependencies: #126417
@pytorchbot revert -m "breaking internal builds" -c ghfirst |
@pytorchbot successfully started a revert job. Check the current status here. |
…alideScheduling (#126417)" This reverts commit 4f9399b. Reverted #126417 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](#126417 (comment)))
@jansel your PR has been successfully reverted. |
This puts the halide runtime in a global shared object, rather than copying it to each kernel. Having many copies of the runtime causes many issues with cuda. Pull Request resolved: #129025 Approved by: https://github.com/shunting314, https://github.com/eellison ghstack dependencies: #126417
Prior to this the generated Halide code was a rather literal translation of the Triton code, with XBLOCK/YBLOCK/RBLOCK and 1D inputs. Halide prefers dimensions, and this 1D index triggers a lot of bugs and perf issues. This PR infers dimensions and changes the indexing in the generated code. Before ```py @hl.generator(name="kernel") class Kernel: in_ptr0 = hl.InputBuffer(hl.Float(32), 1) out_ptr3 = hl.OutputBuffer(hl.Float(32), 2) def generate(g): in_ptr0 = g.in_ptr0 out_ptr3 = g.out_ptr3 xindex = hl.Var('xindex') rindex = hl.Var('rindex') r1 = rindex x0 = xindex idom = hl.RDom([hl.Range(0, 16), hl.Range(0, 32)]) odom = hl.RDom([hl.Range(0, 16)]) rdom = hl.RDom([hl.Range(0, 32)]) xindex_idom = idom.x xindex_odom = odom.x rindex_idom = idom.y r1_idom = rindex_idom x0_idom = xindex_idom x0_odom = xindex_odom tmp0 = hl.Func('tmp0') tmp0[rindex, xindex] = in_ptr0[r1 + (32*x0)] tmp1 = hl.Func('tmp1') tmp1[xindex] = hl.maximum(rdom, tmp0[rdom, xindex]) tmp2 = hl.Func('tmp2') tmp2[rindex, xindex] = tmp0[rindex, xindex] - tmp1[xindex] tmp3 = hl.Func('tmp3') tmp3[rindex, xindex] = hl.fast_exp(hl.cast(hl.Float(32), tmp2[rindex, xindex])) if tmp2.type().bits() <= 32 else hl.exp(tmp2[rindex, xindex]) tmp4 = hl.Func('tmp4') tmp4[xindex] = hl.sum(rdom, tmp3[rdom, xindex]) tmp5 = hl.Func('tmp5') tmp5[rindex, xindex] = tmp3[rindex, xindex] / tmp4[xindex] out_ptr3_i0 = hl.Var('out_ptr3_i0') out_ptr3_i1 = hl.Var('out_ptr3_i1') out_ptr3[out_ptr3_i0, out_ptr3_i1] = hl.cast(out_ptr3.type(), tmp5[out_ptr3_i0, out_ptr3_i1]) assert g.using_autoscheduler() in_ptr0.set_estimates([hl.Range(0, 512)]) out_ptr3.set_estimates([hl.Range(0, 32), hl.Range(0, 16)]) ``` After ```py @hl.generator(name="kernel") class Kernel: in_ptr0 = hl.InputBuffer(hl.Float(32), 2) out_ptr3 = hl.OutputBuffer(hl.Float(32), 2) def generate(g): in_ptr0 = g.in_ptr0 out_ptr3 = g.out_ptr3 h0 = hl.Var('h0') h1 = hl.Var('h1') rdom = hl.RDom([hl.Range(0, 32)]) hr1 = rdom[0] tmp0 = hl.Func('tmp0') tmp0[h0, h1] = in_ptr0[h0, h1,] tmp1 = hl.Func('tmp1') tmp1[h1] = hl.maximum(rdom, tmp0[hr1, h1]) tmp2 = hl.Func('tmp2') tmp2[h0, h1] = tmp0[h0, h1] - tmp1[h1] tmp3 = hl.Func('tmp3') tmp3[h0, h1] = hl.fast_exp(hl.cast(hl.Float(32), tmp2[h0, h1])) if tmp2.type().bits() <= 32 else hl.exp(tmp2[h0, h1]) tmp4 = hl.Func('tmp4') tmp4[h1] = hl.sum(rdom, tmp3[hr1, h1]) tmp5 = hl.Func('tmp5') tmp5[h0, h1] = tmp3[h0, h1] / tmp4[h1] out_ptr3[h0, h1,] = hl.cast(hl.Float(32), tmp5[h0, h1]) assert g.using_autoscheduler() in_ptr0.dim(0).set_min(0) in_ptr0.dim(0).set_stride(1) in_ptr0.dim(0).set_extent(32) in_ptr0.dim(1).set_min(0) in_ptr0.dim(1).set_stride(32) in_ptr0.dim(1).set_extent(16) in_ptr0.set_estimates([hl.Range(0, 32), hl.Range(0, 16)]) out_ptr3.set_estimates([hl.Range(0, 32), hl.Range(0, 16)]) ``` Pull Request resolved: #129026 Approved by: https://github.com/shunting314, https://github.com/eellison ghstack dependencies: #126417, #129025
Pull Request resolved: #127506 Approved by: https://github.com/shunting314, https://github.com/eellison ghstack dependencies: #126417, #129025, #129026
Requires halide/Halide#8255 Pull Request resolved: #129036 Approved by: https://github.com/shunting314, https://github.com/eellison ghstack dependencies: #126417, #129025, #129026, #127506
In theory Halide doesn't need the split reduction stuff we do for Triton since it can generate multiple kernels. Pull Request resolved: #129320 Approved by: https://github.com/shunting314, https://github.com/eellison ghstack dependencies: #126417, #129025, #129026, #127506, #129036
Stack from ghstack (oldest at bottom):
cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang