Torch nn.Module -> TVM Tensor program
A easy tool for generating Tensor Program from torch nn.module
nn.Module ---> fx.graph ---> tvm relax IR ---> graph fused relax IR ---> tvm tensor IR ---> tuned tensor IR ---> ex&vm
Usage Detail in /example/example.ipynb
- Torch2Tensor
import torch import torchvision.models as models from Torch2Tensor.t2t import T2TParser cls_model_name = ['alexnet', 'googlenet', 'vgg11', 'resnet50', 'inception_v3', 'densenet121', 'mobilenet_v2', 'shufflenet_v2_x1_0', 'regnet_y_400mf', 'mnasnet0_5', 'squeezenet1_0', 'efficientnet_b0', 'mobilenet_v3_small'] # CNN cls model mlc_dict = dict(target='cuda --max_threads_per_block=1024 --max_shared_memory_per_block=49152', work_dir="./tune_tmp", task_name='main', max_trials_global=64, num_trials_per_iter=32, compile_tir_target='cuda') class Demo(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d(3, 3, 3) self.ada = torch.nn.AdaptiveAvgPool2d((1, 1)) self.linear = torch.nn.Linear(3, 1) def forward(self, x): x = self.conv(x) x = self.ada(x).view((1, -1)) x = self.linear(x) return x if __name__ == "__main__": model = Demo() # model = getattr(models, 'resnet50')() x = torch.randn((1,3,224, 224)) input_shapes = [(1,3, 224, 224)] PR = T2TParser(model, x, input_shapes, **mlc_dict) PR.convert() # torch.nn.Module -> torch.fx.graph & tvm relax IR PR.print_tabular(PR.pytorch_graph) PR.print_ir(PR.relax_graph) # -> show Relax IR PR.fuse_op() # relax graph fuse eg.matmul + add PR.print_ir(PR.RelaxIR) # show fused op Relax IR PR.gen_TensorIR() # tvm relax IR -> tvm tensor IR PR.print_ir(PR.TensorIR) # show Tensor IR PR.print_op(PR.TensorIR) # print all operations in model PR.tune_tir() # ansor: automatic tensor code optimizer PR.print_ir(PR.tuned_TensorIR) # show optimizer tensor program PR.check_result() # check tensor program correctness PR.infer_benchmark() # test tensor program performance
type | name |
---|---|
nn.Module | Conv2d, BatchNorm, LayerNorm, Linear/Dense, Maxpool2d, AdaptiveAvgPool2d, Avgpool2d, Softmax, Sigmoid, ReLU, SiLU, ReLU6, Hardsigmoid, Hardswish, Dropout |
function | flatten, add, relu, reshape, matmul, multiply, subtract, softmax, sigmoid, maxpool2d, avgpool2d, concat, transpose, floordiv, stochasticdepth |
method | view(reshape), size, contiguous, chunk, mean, shape, getitem, getattr |
task | type | name |
---|---|---|
Cls | CNN(13) | Alexnet,VGG11,Resnet50,Inceptionv3,GoogleNet,Densenet121,Mobilenetv2, Shufflenet,Regnet,MNasnet,Squeezenet,EfficientNet,MobileNetv3 |
--- | Transformer | SimpleViT,ViT(*) |
- Relax: relax(relay next)(relax'package, this repo based on cuda11.3)
- brocolli: Torch Fx Pytorch Model Converter(for onnx & caffe)
- MLC: Machine Learning Compiler(chen etc.)
- support more ops
- add user own graph optimizer pass
- complete CV:cls models benchmark test
- register op nn.dense now support input data with more than 2-dim tensor
- if you use rearrange from einops, you should use primitive op(transpose, view, contiguous,etc.) replace it.(due to func len in einops)
# out = rearrange(out, 'b h n d -> b n (h d)')
out = torch.transpose(out, 1, 2).contiguous()
shape = out.size()
out = out.view((shape[0], shape[1], -1))
- if you wanna register your own special op, you should do 3 steps:
1. register your op in dir: Torch2Tensor/t2t_relax/op
2. construct your op_layer in dir: /Torch2Tensor/t2t_relax/module or function
3. define your own graph fuse pattern in dir: Torch2Tensor/t2t_optimizer/op_fuse
4. define your low-level te computation in dir: Torch2Tensor/t2t_tir
- still in developing, maybe unstable