Skip to content
/ TOP Public

Transductive Learning over the Product Graph. C++ Implementation

License

Notifications You must be signed in to change notification settings

quark0/TOP

Repository files navigation

TOP

Transductive Learning over the Product Graph

Description

This piece of code implements the content-aware link prediction algorithm described in

Liu, Hanxiao, and Yiming Yang. "Bipartite Edge Prediction via Transductive Learning over Product Graphs." Proceedings of the 32nd International Conference on Machine Learning (ICML). 2015.

The program is going to carry out transductive learning over the Cartesian product graph with the heat diffusion kernel, which gives the best average empirical performace.

Usage

The program takes four files as its input:

A sparse graph G on the left and a sparse graph H on the right in the following format

vertexIn_G anotherVertexIn_G edgeStrength

Cross-graph links for training and testing

vertexIn_G vertexIn_H linkStrength

For example, G could be the social network among the users and H could be the graph of movie-movie similarity induced from the movie genres. In this case, cross-graph links may correspond to user-movie ratings.

The program reads configurations specified in *.ini. The provided configuration file should be self-explanatory. Here is a sample pipeline for execution and evaluation:

make && ./train cfg.ini && python eval.py data/cmu/link.test.txt predict.txt

Author

Hanxiao Liu, Carnegie Mellon University

About

Transductive Learning over the Product Graph. C++ Implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published