forked from iTimeTraveler/SortAlgorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Bench.java
257 lines (225 loc) · 9.56 KB
/
Bench.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
package com.example;//
// HERE BE DRAGONS!
//
// You don't have to read any of this file.
// It's just the benchmarking program.
//
import java.util.*;
/**
* 排序算法分析评价类,比较各算法耗时
* 参考 http://www.cse.chalmers.se/edu/course/DIT960/lab1-sorting.html
*/
public class Bench {
/** Main function **/
public static void main(final String[] args) {
executionTimeReport();
}
/** Test data generator **/
// Generates a random array of size 'size'.
// Part of the array is sorted, while the rest is chosen uniformly
// at random; the 'randomness' parameter sets what percent of the
// array is chosen at random.
public static int[] generateSample(int size, int randomness) {
int[] sample = new int[size];
Random random = new Random();
int previousElement = 0;
for (int i = 0; i < size; i++) {
if (random.nextInt(100) >= randomness) {
int randomOffset = random.nextInt(3);
int currentElement = previousElement + randomOffset;
sample[i] = currentElement;
previousElement = currentElement;
} else {
sample[i] = random.nextInt(size);
}
}
return sample;
}
/** Auxiliary code, that measures performance of sorting algorithms **/
private static int[] SAMPLE_SIZES = new int[] { 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000 };
private static void executionTimeReport() {
for (int size : SAMPLE_SIZES) {
executionTimeReport(size);
}
}
public static interface Function<A, B> {
public B apply(A arg);
}
public static Function<int[], int[]> insertionSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.insertionSort(array);
return array;
}
};
public static Function<int[], int[]> shellSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.shellSort(array);
return array;
}
};
public static Function<int[], int[]> selectionSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.selectionSort(array);
return array;
}
};
public static Function<int[], int[]> heapSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.heapSort(array);
return array;
}
};
public static Function<int[], int[]> bubbleSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.bubbleSort(array);
return array;
}
};
public static Function<int[], int[]> quickSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.quickSort(array, 0, array.length-1);
return array;
}
};
public static Function<int[], int[]> mergeSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.insertionSort(array);
return array;
}
};
public static Function<int[], int[]> radixSort = new Function<int[], int[]>() {
@Override public int[] apply(int[] array) {
SortAlgorithms.radixSort(array);
return array;
}
};
// Execute an algorithm on an input and return its runtime.
private static String execute(Function<int[], int[]> algorithm, int[] input) {
// To get accurate results even for small inputs, we repeat
// the algorithm several times in a row and count the total time.
// We pick the number of repetitions automatically so that
// the total time is at least 10ms.
//
// To pick the number of repetitions, we start by assuming
// that one repetition will be enough. We then execute the
// algorithm and measure how long it takes. If it took less
// than 10ms, we scale up the number of repetitions by
// an appropriate factor. E.g., if the algorithm only took
// 1ms, we will multiply the number of repetitions by 10.
// We then repeat this whole process with the new number of
// repetitions.
//
// Once the repetitions take more than 10ms, we try it three
// times and take the smallest measured runtime. This avoids
// freakish results due to e.g. the garbage collector kicking
// in at the wrong time.
// Minimum acceptable value for total time.
final long target = 10000000;
// How many times to re-measure the algorithm once it hits the
// target time.
final int MAX_LIVES = 3;
// The final result of the algorithm.
int[] result = {};
// How many repetitions we guess will be enough.
int repetitions = 1;
// The lowest runtime we saw with the current number of repetitions.
long runtime = Long.MAX_VALUE;
// How many times we've measured after hitting the target time.
int lives = MAX_LIVES;
try {
while(true) {
// Build the input arrays in advance to avoid memory
// allocation during testing.
int[][] inputs = new int[repetitions][];
for (int i = 0; i < repetitions; i++)
inputs[i] = Arrays.copyOf(input, input.length);
// Try to reduce unpredictability
System.gc();
Thread.yield();
// Run the algorithm
long startTime = System.nanoTime();
for (int i = 0; i < repetitions; i++)
result = algorithm.apply(inputs[i]);
long endTime = System.nanoTime();
runtime = Math.min(runtime, endTime - startTime);
// If the algorithm is really slow, we don't
// need to measure too carefully
if (repetitions == 1 && runtime >= 30*target)
break;
if (runtime >= target) {
// Ran for long enough - reduce number of lives by one.
if (lives == 0) break; else lives--;
} else {
// Didn't run for long enough.
// Increase number of repetitions to try to hit
// target - but at least double it.
if (runtime == 0)
repetitions *= 2;
else
repetitions *= 2 * target / runtime;
runtime = Long.MAX_VALUE;
lives = MAX_LIVES;
}
}
} catch (UnsupportedOperationException uop) {
return "-";
} catch (Exception e) {
return "EXCEPTION";
} catch (StackOverflowError e) {
return "STACK OVERFLOW";
}
int[] reference = Arrays.copyOf(input, input.length);
Arrays.sort(reference);
if (Arrays.equals(result, reference)) {
return String.format("%6f", (double)runtime / ((long)repetitions * 1000000)) + "ms";
} else {
return "INCORRECT";
}
}
private static void executionTimeReport(int size) {
int[] sortedSample = generateSample(size, 0);
int[] partiallySortedSample = generateSample(size, 5);
int[] randomSample = generateSample(size, 100);
System.out.println(String.format(
"### Arrays of length %d\n" +
"=================================================================\n" +
"| Algorithm | %14s | %14s | %14s |\n" +
"| %3s | %14s | %14s | %14s |\n" +
"| Insertion sort | %14s | %14s | %14s |\n" +
"| Shell sort | %14s | %14s | %14s |\n" +
"| Selection sort | %14s | %14s | %14s |\n" +
"| Heap sort | %14s | %14s | %14s |\n" +
"| Bubble sort | %14s | %14s | %14s |\n" +
"| Quicksort | %14s | %14s | %14s |\n" +
"| Merge sort | %14s | %14s | %14s |\n" +
"| Radix sort | %14s | %14s | %14s |\n",
size,
"Random", "95% sorted", "Sorted",
":--", "---:", "---:", "---:",
execute(insertionSort, randomSample),
execute(insertionSort, partiallySortedSample),
execute(insertionSort, sortedSample),
execute(shellSort, randomSample),
execute(shellSort, partiallySortedSample),
execute(shellSort, sortedSample),
execute(selectionSort, randomSample),
execute(selectionSort, partiallySortedSample),
execute(selectionSort, sortedSample),
execute(heapSort, randomSample),
execute(heapSort, partiallySortedSample),
execute(heapSort, sortedSample),
execute(bubbleSort, randomSample),
execute(bubbleSort, partiallySortedSample),
execute(bubbleSort, sortedSample),
execute(quickSort, randomSample),
execute(quickSort, partiallySortedSample),
execute(quickSort, sortedSample),
execute(mergeSort, randomSample),
execute(mergeSort, partiallySortedSample),
execute(mergeSort, sortedSample),
execute(radixSort, randomSample),
execute(radixSort, partiallySortedSample),
execute(radixSort, sortedSample)
));
}
}