We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
利用 Graphviz 可以很方便地绘制流程图、数据结构图等,结合 Jupyter 可以更方便地做可视化展示。
去官方下载页面,Mac 下面直接下载 pkg 安装包,双击即可安装。Ubuntu 需要下载 deb 包,然后通过 dpkg 安装:
dpkg
sudo dpkg -i graphviz_2.38.0-1~saucy_amd64.deb
有依赖包可能需要下载安装或通过 sudo apt-get -f install 解决。
sudo apt-get -f install
pip install graphviz
安装好之后可以直接在 Jupyter 中调用,通过文档发现:
Graph and Digraph objects have a _repr_svg_()-method so they can be rendered and displayed directly inside a Jupyter notebook.
Graph
Digraph
_repr_svg_()
也就是说可以直接在 Jupyter 中 Output 出来,实例见lolita::graphviz。
The text was updated successfully, but these errors were encountered:
rainyear
No branches or pull requests
利用 Graphviz 可以很方便地绘制流程图、数据结构图等,结合 Jupyter 可以更方便地做可视化展示。
1. 安装 graphviz
去官方下载页面,Mac 下面直接下载 pkg 安装包,双击即可安装。Ubuntu 需要下载 deb 包,然后通过
dpkg
安装:有依赖包可能需要下载安装或通过
sudo apt-get -f install
解决。2. 安装 Python 封装
安装好之后可以直接在 Jupyter 中调用,通过文档发现:
也就是说可以直接在 Jupyter 中 Output 出来,实例见lolita::graphviz。
The text was updated successfully, but these errors were encountered: