Pyspark helper methods to maximize developer productivity.
Quinn provides DataFrame validation functions, useful column functions / DataFrame transformations, and performant helper functions.
Quinn is uploaded to PyPi and can be installed with this command:
pip install quinn
import quinn
validate_presence_of_columns()
quinn.validate_presence_of_columns(source_df, ["name", "age", "fun"])
Raises an exception unless source_df
contains the name
, age
, and fun
column.
validate_schema()
quinn.validate_schema(source_df, required_schema)
Raises an exception unless source_df
contains all the StructFields
defined in the required_schema
.
validate_absence_of_columns()
quinn.validate_absence_of_columns(source_df, ["age", "cool"])
Raises an exception if source_df
contains age
or cool
columns.
single_space()
actual_df = source_df.withColumn(
"words_single_spaced",
quinn.single_space(col("words"))
)
Replaces all multispaces with single spaces (e.g. changes "this has some"
to "this has some"
.
remove_all_whitespace()
actual_df = source_df.withColumn(
"words_without_whitespace",
quinn.remove_all_whitespace(col("words"))
)
Removes all whitespace in a string (e.g. changes "this has some"
to "thishassome"
.
anti_trim()
actual_df = source_df.withColumn(
"words_anti_trimmed",
quinn.anti_trim(col("words"))
)
Removes all inner whitespace, but doesn't delete leading or trailing whitespace (e.g. changes " this has some "
to " thishassome "
.
remove_non_word_characters()
actual_df = source_df.withColumn(
"words_without_nonword_chars",
quinn.remove_non_word_characters(col("words"))
)
Removes all non-word characters from a string (e.g. changes "si%$#@!#$!@#mpsons"
to "simpsons"
.
multi_equals()
source_df.withColumn(
"are_s1_and_s2_cat",
quinn.multi_equals("cat")(col("s1"), col("s2"))
)
multi_equals
returns true if s1
and s2
are both equal to "cat"
.
approx_equal()
This function takes 3 arguments which are 2 Pyspark DataFrames and one integer values as threshold, and returns the Boolean column which tells if the columns are equal in the threshold.
let the columns be
col1 = [1.2, 2.5, 3.1, 4.0, 5.5]
col2 = [1.3, 2.3, 3.0, 3.9, 5.6]
threshold = 0.2
result = approx_equal(col("col1"), col("col2"), threshold)
result.show()
+-----+
|value|
+-----+
| true|
|false|
| true|
| true|
| true|
+-----+
array_choice()
This function takes a Column as a parameter and returns a PySpark column that contains a random value from the input column parameter
df = spark.createDataFrame([(1,), (2,), (3,), (4,), (5,)], ["values"])
result = df.select(array_choice(col("values")))
The output is :=
+--------------+
|array_choice()|
+--------------+
| 2|
+--------------+
regexp_extract_all()
The regexp_extract_all takes 2 parameters String s
and regexp
which is a regular expression. This function finds all the matches for the string which satisfies the regular expression.
print(regexp_extract_all("this is a example text message for testing application",r"\b\w*a\w*\b"))
The output is :=
['a', 'example', 'message', 'application']
Where r"\b\w*a\w*\b"
pattern checks for words containing letter a
week_start_date()
It takes 2 parameters, column and week_start_day. It returns a Spark Dataframe column which contains the start date of the week. By default the week_start_day is set to "Sun".
For input ["2023-03-05", "2023-03-06", "2023-03-07", "2023-03-08"]
the Output is
result = df.select("date", week_start_date(col("date"), "Sun"))
result.show()
+----------+----------------+
| date|week_start_date |
+----------+----------------+
|2023-03-05| 2023-03-05|
|2023-03-07| 2023-03-05|
|2023-03-08| 2023-03-05|
+----------+----------------+
week_end_date()
It also takes 2 Paramters as Column and week_end_day, and returns the dateframe column which contains the end date of the week. By default the week_end_day is set to "sat"
+---------+-------------+
date|week_end_date|
+---------+-------------+
2023-03-05| 2023-03-05|
2023-03-07| 2023-03-12|
2023-03-08| 2023-03-12|
+---------+-------------+
uuid5()
This function generates UUIDv5 in string form from the passed column and optionally namespace and optional extra salt. By default namespace is NAMESPACE_DNS UUID and no extra string used to reduce hash collisions.
df = spark.createDataFrame([("lorem",), ("ipsum",)], ["values"])
result = df.select(quinn.uuid5(F.col("values")).alias("uuid5"))
result.show(truncate=False)
The output is :=
+------------------------------------+
|uuid5 |
+------------------------------------+
|35482fda-c10a-5076-8da2-dc7bf22d6be4|
|51b79c1d-d06c-5b30-a5c6-1fadcd3b2103|
+------------------------------------+
snake_case_col_names()
quinn.snake_case_col_names(source_df)
Converts all the column names in a DataFrame to snake_case. It's annoying to write SQL queries when columns aren't snake cased.
sort_columns()
quinn.sort_columns(df=source_df, sort_order="asc", sort_nested=True)
Sorts the DataFrame columns in alphabetical order, including nested columns if sort_nested is set to True. Wide DataFrames are easier to navigate when they're sorted alphabetically.
column_to_list()
quinn.column_to_list(source_df, "name")
Converts a column in a DataFrame to a list of values.
two_columns_to_dictionary()
quinn.two_columns_to_dictionary(source_df, "name", "age")
Converts two columns of a DataFrame into a dictionary. In this example, name
is the key and age
is the value.
to_list_of_dictionaries()
quinn.to_list_of_dictionaries(source_df)
Converts an entire DataFrame into a list of dictionaries.
show_output_to_df()
quinn.show_output_to_df(output_str, spark)
Parses a spark DataFrame output string into a spark DataFrame. Useful for quickly pulling data from a log into a DataFrame. In this example, output_str is a string of the form:
+----+---+-----------+------+
|name|age| stuff1|stuff2|
+----+---+-----------+------+
|jose| 1|nice person| yoyo|
| li| 2|nice person| yoyo|
| liz| 3|nice person| yoyo|
+----+---+-----------+------+
schema_from_csv()
quinn.schema_from_csv("schema.csv")
Converts a CSV file into a PySpark schema (aka StructType
). The CSV must contain the column name and type. The nullable and metadata columns are optional.
Here's an example CSV file:
name,type
person,string
address,string
phoneNumber,string
age,int
Here's how to convert that CSV file to a PySpark schema:
schema = schema_from_csv(spark, "some_file.csv")
StructType([
StructField("person", StringType(), True),
StructField("address", StringType(), True),
StructField("phoneNumber", StringType(), True),
StructField("age", IntegerType(), True),
])
Here's a more complex CSV file:
name,type,nullable,metadata
person,string,false,{"description":"The person's name"}
address,string
phoneNumber,string,TRUE,{"description":"The person's phone number"}
age,int,False
Here's how to read this CSV file into a PySpark schema:
another_schema = schema_from_csv(spark, "some_file.csv")
StructType([
StructField("person", StringType(), False, {"description": "The person's name"}),
StructField("address", StringType(), True),
StructField("phoneNumber", StringType(), True, {"description": "The person's phone number"}),
StructField("age", IntegerType(), False),
])
print_schema_as_code()
fields = [
StructField("simple_int", IntegerType()),
StructField("decimal_with_nums", DecimalType(19, 8)),
StructField("array", ArrayType(FloatType()))
]
schema = StructType(fields)
printable_schema: str = quinn.print_schema_as_code(schema)
Converts a Spark DataType
to a string of Python code that can be evaluated as code using eval(). If the DataType
is a StructType
, this can be used to print an existing schema in a format that can be copy-pasted into a Python script, log to a file, etc.
For example:
print(printable_schema)
StructType(
fields=[
StructField("simple_int", IntegerType(), True),
StructField("decimal_with_nums", DecimalType(19, 8), True),
StructField(
"array",
ArrayType(FloatType()),
True,
),
]
)
Once evaluated, the printable schema is a valid schema that can be used in dataframe creation, validation, etc.
from chispa.schema_comparer import assert_basic_schema_equality
parsed_schema = eval(printable_schema)
assert_basic_schema_equality(parsed_schema, schema) # passes
print_schema_as_code()
can also be used to print other DataType
objects.
ArrayType
array_type = ArrayType(FloatType())
printable_type: str = quinn.print_schema_as_code(array_type)
print(printable_type)
ArrayType(FloatType())
MapType
map_type = MapType(StringType(), FloatType())
printable_type: str = quinn.print_schema_as_code(map_type)
print(printable_type)
MapType(
StringType(),
FloatType(),
True,
)
IntegerType
, StringType
etc.
integer_type = IntegerType()
printable_type: str = quinn.print_schema_as_code(integer_type)
print(printable_type)
IntegerType()
from quinn.extensions import *
isFalsy()
source_df.withColumn("is_stuff_falsy", F.col("has_stuff").isFalsy())
Returns True
if has_stuff
is None
or False
.
isTruthy()
source_df.withColumn("is_stuff_truthy", F.col("has_stuff").isTruthy())
Returns True
unless has_stuff
is None
or False
.
isNullOrBlank()
source_df.withColumn("is_blah_null_or_blank", F.col("blah").isNullOrBlank())
Returns True
if blah
is null
or blank (the empty string or a string that only contains whitespace).
isNotIn()
source_df.withColumn("is_not_bobs_hobby", F.col("fun_thing").isNotIn(bobs_hobbies))
Returns True
if fun_thing
is not included in the bobs_hobbies
list.
nullBetween()
source_df.withColumn("is_between", F.col("age").nullBetween(F.col("lower_age"), F.col("upper_age")))
Returns True
if age
is between lower_age
and upper_age
. If lower_age
is populated and upper_age
is null
, it will return True
if age
is greater than or equal to lower_age
. If lower_age
is null
and upper_age
is populate, it will return True
if age
is lower than or equal to upper_age
.
We are actively looking for feature requests, pull requests, and bug fixes.
Any developer that demonstrates excellence will be invited to be a maintainer of the project.
We are using PySpark code-style and sphinx
as docstrings format. For more details about sphinx
format see this tutorial. A short example of sphinx
-formated docstring is placed below:
"""[Summary]
:param [ParamName]: [ParamDescription], defaults to [DefaultParamVal]
:type [ParamName]: [ParamType](, optional)
...
:raises [ErrorType]: [ErrorDescription]
...
:return: [ReturnDescription]
:rtype: [ReturnType]
"""