The predictions for differents tissues and cancer with DeepG4 is available here.
Vincent Rocher, Matthieu Genais, Elissar Nassereddine and Raphael Mourad
DeepG4 is a deep learning model developed to predict a score of DNA sequences to form active G-Guadruplexes (found both in vitro and in vivo) using DNA sequences and DNA accessibility. DeepG4 is built in keras+tensorflow and is wrapped in an R package.
DeepG4 was built with Keras 2.3.1
and tensorflow 2.1.0
, but it
should work with any version of theses libraries.
It seems that our model cannot be properly load so please install keras/tensorflow using the environment file provided :
On a terminal:
conda env create -f environment.yml
On R:
install.packages("keras")
library(keras)
reticulate::use_condaenv("DeepG4")
This will provide you with default CPU installations of Keras and TensorFlow python packages (within a virtualenv) that can be used with or without R.
You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("morphos30/DeepG4")
Given small regions (bed) and an accessibility file (coverage file from ATAC-seq/DNAse-seq/MNase-seq), you can predict active G4 regions in a specific cell type:
library(rtracklayer)
library(BSgenome.Hsapiens.UCSC.hg19)
library(DeepG4)
BED <- system.file("extdata", "test_G4_data.bed", package = "DeepG4")
BED <- import.bed(BED)
ATAC <- system.file("extdata", "Peaks_BG4_G4seq_HaCaT_GSE76688_hg19_201b_Accessibility.bw", package = "DeepG4")
ATAC <- import.bw(ATAC)
Input_DeepG4 <- DeepG4InputFromBED(BED=BED,ATAC = ATAC,GENOME=BSgenome.Hsapiens.UCSC.hg19)
Input_DeepG4
[[1]]
A DNAStringSet instance of length 100
width seq
[1] 201 GTTCGGGCCTCGGTCGCGCCGCCGGGTCTTGCAGACGCGAATGTAAACAGAAACA...TGACTCCTGGAGCGACCTTCACGAGGGAAAGCGCGCCCCCCGGCACCCACCCCT
[2] 201 TTTCTATAGTTTTCTTTTGTTTCTACCTCATGACTAGATGATTCACTGCTTGAAC...GTCAAATCTGTCCATCTTCACTGCCACCCTTCAGTACCAAATGACCAGTCTCTT
[3] 201 GCTTAAAAGCCTGTAAGAAAGATATAATTTGATAGAACTGGCTAGGATTTGTCAG...CGTCAGGGAGGGGGTGGGGCCTCCACGTGGGAGATCTTGCCTGGAGGTGGTGGA
[4] 201 TCCCACACCCGGTAGATGTAAGGGAAAAACTGCATTACCCAGAAGGCACTGCCCC...GTGTGACGTCATCTCCGTGGGCCGGTTTGGCCCTGAAACAGTGTGGGGCCTAGA
[5] 201 AGTAGCTACAGAGTTCCTGCTCCAGCAACCAGGAGCCTTGAGGCAGCACAAGGAC...ACCACAATGTCTGCCAAGAAAGAGGATGAGTCACCAAGACCCACAGGAAAGAGG
... ... ...
[96] 201 CACATGCCTTCCTTGGGGACGTGTTCACACATGTGGCCCTAGCTGTGAGAGACAG...CATCTCAGAACAGCTGAGCTGGAAGTGGGTGAATAATAATAATAATAATAATAA
[97] 201 TGGTGGTCTTTCTCTACCGGGCCTGGTAGCCAAAGACAAAGGTCATAATCACTTG...CTATGTACTCTTCAAAGTGCCACCTCCTGGCTGCAAGCCAACCAACACAAAACC
[98] 201 TGACCGTAGACCTCGTGCACTTCTGCTGCGGTCGGGGCCGGAGTCTGGGCTGGAG...GCGATCCAGAGCCAAGCGCCCCGCCCCTGCCCGGGCGCGCTCCCTCCTTAGCCC
[99] 201 TTAACGTCATCAGTCGGGAGGACGACAGCTACGCACGCGCGGGGCACCTCCTCTG...GCCACGGTGGAGGCAGCGGCGAGAGGGGGCGGGGACAAGGAGAGGGCACGCACG
[100] 201 GTGTCCGGGTGAGAGACCTGGAGGTGGGGCCTAGGTGTCTACCCGGCCAGGTGCG...TAAGGCTCGGGGCCAGTCGTCGTCCATTCCTTCCTAACACCTCCCTATCCTCCC
[[2]]
[1] 0.000000000 0.016287416 0.033261447 0.069375103 0.018520650 0.010934717 0.036308476 0.315843234 0.037658374
[10] 0.045887551 0.037320211 0.042853401 0.068908093 0.071774485 0.084947561 0.027456211 0.033915868 0.006912598
[19] 0.012604675 0.051405275 0.093813195 0.019288668 0.051228826 0.019520666 0.048686840 0.050116329 0.045801884
[28] 0.033079207 0.035834917 0.056326946 0.096531489 0.064706374 0.026422647 0.016979087 0.008512502 0.021891554
[37] 0.016688682 0.109472225 0.047901838 0.066676075 0.052591085 0.017467983 0.035541899 0.060001992 0.028878783
[46] 0.056284886 0.045126048 0.052469122 0.101620595 0.047741155 0.036925371 0.021645371 0.044472962 0.012457179
[55] 0.020373459 0.109529076 0.039006694 0.047824384 0.028752257 0.015437852 0.069926660 0.022213134 0.019726120
[64] 0.044609840 0.028773493 0.008077349 0.042587371 0.016502886 0.035757895 0.015023933 0.024181422 0.057516040
[73] 0.027492004 0.030316917 0.049878433 0.020105394 0.025934350 0.023845766 0.032338052 0.048007935 0.136436151
[82] 0.060423998 0.034617445 0.051958662 0.064664156 0.034518694 0.020277026 0.042060108 0.055335700 0.051632313
[91] 0.066588875 0.030586623 0.043823259 0.034947155 0.082091662 0.008496193 0.034567766 0.055516400 0.062191534
[100] 0.049011882
Then predict using both DNA and Accessibility :
predictions <- DeepG4(X=Input_DeepG4[[1]],X.atac = Input_DeepG4[[2]])
head(predictions)
[,1]
[1,] 0.8414769
[2,] 0.5075037
[3,] 0.9905243
[4,] 0.9991857
[5,] 0.9387835
[6,] 0.2330312
You still can predict active G4 regions using only DNA sequences :
library(rtracklayer)
library(BSgenome.Hsapiens.UCSC.hg19)
library(Biostrings)
library(DeepG4)
BED <- system.file("extdata", "test_G4_data.bed", package = "DeepG4")
BED <- import.bed(BED)
sequences <- getSeq(BSgenome.Hsapiens.UCSC.hg19,BED)
predictions <- DeepG4(X=sequences)
head(predictions)
[,1]
[1,] 0.9478214
[2,] 0.5868858
[3,] 0.9660227
[4,] 0.9093548
[5,] 0.9119551
[6,] 0.2471965
If you have a large sequence (>201bp up to several Mbp), you can scan the sequence and predict the positions of active G4s within the sequence.
library(rtracklayer)
library(BSgenome.Hsapiens.UCSC.hg19)
library(DeepG4)
BED <- system.file("extdata", "promoters_seq_example.bed", package = "DeepG4")
BED <- import.bed(BED)
ATAC <- system.file("extdata", "Peaks_BG4_G4seq_HaCaT_GSE76688_hg19_201b_Accessibility.bw", package = "DeepG4")
ATAC <- import.bw(ATAC)
res <- DeepG4Scan(X = BED,X.ATAC=ATAC,k=20,treshold=0.5,GENOME=BSgenome.Hsapiens.UCSC.hg19)
DeepG4Scan function scans each input sequence with a step of k=20
and
outputs for each input sequence the G4 positions (+/- 100bp) and the
corresponding DeepG4 probabilities (>= treshold).
library(dplyr)
res %>% dplyr::select(-seq) %>% group_by(seqnames) %>% dplyr::slice(1:2) %>% head
# A tibble: 6 x 5
# Groups: seqnames [3]
seqnames start end width score
<fct> <int> <int> <int> <dbl>
1 chr15 63569229 63569429 201 0.690
2 chr15 63569249 63569449 201 0.810
3 chr2 131850345 131850545 201 0.548
4 chr2 131850385 131850585 201 0.671
5 chr5 10562715 10562915 201 0.547
6 chr5 10562735 10562935 201 0.503
library(Biostrings)
library(rtracklayer)
library(BSgenome.Hsapiens.UCSC.hg19)
library(DeepG4)
sequences <- import.bed(system.file("extdata", "promoters_seq_example.bed", package = "DeepG4"))
sequences <- getSeq(BSgenome.Hsapiens.UCSC.hg19,sequences)
res <- DeepG4Scan(X = sequences,k=20,treshold=0.5)
DeepG4Scan function scans each input sequence with a step of k=20
and
outputs for each input sequence the G4 positions (+/- 100bp) and the
corresponding DeepG4 probabilities (>= treshold).
library(dplyr)
res %>% dplyr::select(-seq) %>% group_by(seqnames) %>% dplyr::slice(1:2) %>% head
# A tibble: 6 x 5
# Groups: seqnames [3]
seqnames start end width score
<fct> <int> <int> <int> <dbl>
1 chr15 63569229 63569429 201 0.690
2 chr15 63569249 63569449 201 0.810
3 chr2 131850345 131850545 201 0.548
4 chr2 131850385 131850585 201 0.671
5 chr5 10562715 10562915 201 0.547
6 chr5 10562735 10562935 201 0.503
Using one-hot encoding of DNA, convolution kernels (first layer of DeepG4) can be interpreted as weighted motifs, similar to position weight matrices (PWMs) used for DNA motifs. The function ExtractMotifFromModel detects DeepG4 DNA motifs found in the input sequences.
library(Biostrings)
library(DeepG4)
library(ggseqlogo)
library(cowplot)
sequences <- readDNAStringSet(system.file("extdata", "test_G4_data.fa", package = "DeepG4"))
res <- ExtractMotifFromModel(sequences,top_kernel=4)
p.pcm <- lapply(res,function(x){ggseqlogo(as.matrix(x)) + ggplot2::theme_classic(base_size=14)})
print(plot_grid(plotlist = p.pcm,ncol=2))
If you want to use our model architecture, but retrain with your own
dataset, you can do it by running our function DeepG4
with
retrain = TRUE
library(Biostrings)
library(DeepG4)
library(rsample)
library(rtracklayer)
library(BSgenome.Hsapiens.UCSC.hg19)
ATAC <- system.file("extdata", "Peaks_BG4_G4seq_HaCaT_GSE76688_hg19_201b_Accessibility.bw", package = "DeepG4")
ATAC <- import.bw(ATAC)
# Read positive and segative set of sequences
bed.pos <- import.bed(system.file("extdata", "Peaks_BG4_G4seq_HaCaT_GSE76688_hg19_201b.bed", package = "DeepG4"))
bed.neg <- import.bed(system.file("extdata", "Peaks_BG4_G4seq_HaCaT_GSE76688_hg19_201b_Ctrl_gkmSVM.bed", package = "DeepG4"))
# Generate classes
Y <- c(rep(1,length(bed.pos)),rep(0,length(bed.neg)))
BED <- c(bed.pos,bed.neg)
Input_DeepG4 <- DeepG4InputFromBED(BED=BED,ATAC = ATAC,GENOME=BSgenome.Hsapiens.UCSC.hg19)
training <- DeepG4(X=Input_DeepG4[[1]],X.atac=Input_DeepG4[[2]],Y,retrain=TRUE,retrain.path = "DeepG4_retrained.hdf5")
You can now take a look on the results :
library(cowplot)
p_res_train <- cowplot::plot_grid(plotlist = training[2:3])
print(p_res_train)
training[[4]]
# A tibble: 4 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 accuracy binary 0.987
2 kap binary 0.973
3 mn_log_loss binary 0.0525
4 roc_auc binary 0.999