Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding benchmark notebook for hdbscan soft clustering #5103

385 changes: 385 additions & 0 deletions notebooks/hdbscan_soft_clustering_benchmark.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,385 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ab99241c-31a6-4670-bbf8-5d26ab86b150",
"metadata": {},
"source": [
"# HDBSCAN Soft Clustering Benchmark\n",
"\n",
"This notebook is intended to provide a quick benchmark comparing RAPIDS cuML's HDBSCAN soft clustering on the GPU against the Scikit-learn-contrib version on the CPU.\n",
"\n",
"This benchmark uses the [A Million News Headlines dataset](https://www.kaggle.com/datasets/therohk/million-headlines) from Kaggle, which contains over 1 million news article headlines from the Australian Broadcasting Corporation. The dataset will need to be downloaded to run this notebook.\n",
"\n",
"To run this notebook, you will need RAPIDS cuML installed in addition to HDBSCAN and the `sententence-transformers` library. All of these libraries can be installed with `conda`"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0b310d0c-2529-4baa-aeae-43cb816592f7",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cjnolet/software/miniconda3/envs/cuml_2302_122122/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import os\n",
"import time\n",
"import json\n",
"from datetime import datetime\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import cuml\n",
"import hdbscan\n",
"\n",
"from sentence_transformers import SentenceTransformer"
]
},
{
"cell_type": "markdown",
"id": "1e3066fc-bb95-4ba4-bbeb-071f9d9d6a07",
"metadata": {},
"source": [
"Adjust the path below to point to the zip file of the Million News Headlines dataset downloaded from Kaggle. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cc54f908-68ae-4499-bb49-63888742a86d",
"metadata": {},
"outputs": [],
"source": [
"million_articles_path = \"/home/cjnolet/Downloads/archive.zip\""
]
},
{
"cell_type": "markdown",
"id": "4c3cab2f-5e42-46a2-93e9-be95974438ba",
"metadata": {},
"source": [
"Adjust the path below to rename the output file"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6fdbeab1-aef7-46eb-92b3-6a17a059d166",
"metadata": {},
"outputs": [],
"source": [
"DATE_TAG = datetime.now().strftime(\"%Y-%m-%d\")\n",
"\n",
"outpath = f\"hdbscan-apmv-benchmark-results-{DATE_TAG}.json1\"\n",
"if os.path.exists(outpath):\n",
" os.remove(outpath) "
]
},
{
"cell_type": "markdown",
"id": "799fc2c6-b147-4983-8902-47da6fa97592",
"metadata": {},
"source": [
"Some options and settings for controlling the benchmarking behavior. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9d359e85-4b33-48fa-b90f-696619813e9f",
"metadata": {},
"outputs": [],
"source": [
"benchmark_soft_cluster = True\n",
"\n",
"MIN_SAMPLES = 50\n",
"MIN_CLUSTER_SIZE = 5\n",
"\n",
"BACKENDS = {\n",
" \"cuml\": cuml.cluster.hdbscan,\n",
" \"hdbscan\": hdbscan\n",
"}\n",
"\n",
"SIZES = [\n",
" 25000,\n",
" 50000,\n",
" 100000,\n",
" 200000,\n",
" 400000,\n",
" 800000,\n",
" 1600000\n",
"]"
]
},
{
"cell_type": "markdown",
"id": "cfa957d8-e917-43bf-87e2-b649d24a0348",
"metadata": {},
"source": [
"The GPU can have a small overhead for creating a [CUDA context. Warm up the GPU to remove this overhead from the benchmarks"
cjnolet marked this conversation as resolved.
Show resolved Hide resolved
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6c5351a5-d7f4-4308-b249-2eb43721e673",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 3.84 s, sys: 2.03 s, total: 5.87 s\n",
"Wall time: 5.89 s\n"
]
},
{
"data": {
"text/plain": [
"HDBSCAN()"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"clusterer = cuml.cluster.hdbscan.HDBSCAN(\n",
" prediction_data=True\n",
")\n",
"clusterer.fit(np.arange(1000).reshape(50,20))"
]
},
{
"cell_type": "markdown",
"id": "950bb900-7c0f-49ef-8f64-623e2ea00924",
"metadata": {},
"source": [
"Create a lightweight Python context manager to time the HDBSCAN soft clustering steps"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "68a3a8df-4c8a-4c78-8144-03a6b28a3b10",
"metadata": {},
"outputs": [],
"source": [
"class Timer: \n",
" def __enter__(self):\n",
" self.tick = time.time()\n",
" return self\n",
"\n",
" def __exit__(self, *args, **kwargs):\n",
" self.tock = time.time()\n",
" self.elapsed = self.tock - self.tick"
]
},
{
"cell_type": "markdown",
"id": "a51a59fa-4f92-43ef-9b6a-f8710d37ac9e",
"metadata": {},
"source": [
"Read the dataset into a Pandas Dataframe"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "36629678-92b2-4965-a80d-6968636ab619",
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(million_articles_path)"
]
},
{
"cell_type": "markdown",
"id": "983b1935-0d0e-49c5-b659-fe8be5c6d690",
"metadata": {},
"source": [
"Reduce original embedding dimensions with cuML's UMAP"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7855c77c-bee5-4e98-9e51-941673217a00",
"metadata": {},
"outputs": [],
"source": [
"model = SentenceTransformer('all-MiniLM-L6-v2')\n",
"embeddings = model.encode(df.headline_text)\n",
"umap = cuml.manifold.UMAP(n_components=15, n_neighbors=15, min_dist=0.0, random_state=12)\n",
"reduced_data = umap.fit_transform(embeddings)\n",
"np.random.shuffle(reduced_data)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ba98290a-09ad-4cbe-9c8f-824953cc8aef",
"metadata": {},
"outputs": [],
"source": [
"k = reduced_data.shape[1]"
]
},
{
"cell_type": "markdown",
"id": "fac74a11-0ae2-42b1-a4c9-9198279a6ec5",
"metadata": {},
"source": [
"Perform benchmark over configured number of data points"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1d66ca9-f68d-4370-a210-fee4d7491fa1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'backend': 'cuml', 'fit_time': 1.1983146667480469, 'membership_time': 0.004135608673095703, 'ncols': 15, 'nrows': 25000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 58}\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"{'backend': 'hdbscan', 'fit_time': 13.801993370056152, 'membership_time': 5.559847593307495, 'ncols': 15, 'nrows': 25000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 59}\n",
"{'backend': 'cuml', 'fit_time': 2.75565767288208, 'membership_time': 0.0223996639251709, 'ncols': 15, 'nrows': 50000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 110}\n",
"{'backend': 'hdbscan', 'fit_time': 39.785441637039185, 'membership_time': 38.753345012664795, 'ncols': 15, 'nrows': 50000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 108}\n",
"{'backend': 'cuml', 'fit_time': 3.870152235031128, 'membership_time': 0.11231708526611328, 'ncols': 15, 'nrows': 100000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 216}\n",
"{'backend': 'hdbscan', 'fit_time': 104.7076187133789, 'membership_time': 319.6487352848053, 'ncols': 15, 'nrows': 100000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 211}\n",
"{'backend': 'cuml', 'fit_time': 6.86496376991272, 'membership_time': 0.15446257591247559, 'ncols': 15, 'nrows': 200000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 423}\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"{'backend': 'hdbscan', 'fit_time': 104.21986365318298, 'membership_time': 4101.0238032341, 'ncols': 15, 'nrows': 200000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 415}\n",
"{'backend': 'cuml', 'fit_time': 18.392507791519165, 'membership_time': 0.6843054294586182, 'ncols': 15, 'nrows': 400000, 'min_samples': 50, 'min_cluster_size': 5, 'num_clusters': 800}\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using `tokenizers` before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
}
],
"source": [
"for n in SIZES:\n",
" for library, backend in BACKENDS.items():\n",
" bench_data = reduced_data[:n,:]\n",
"\n",
" benchmark_payload = {}\n",
" benchmark_payload[\"backend\"] = library\n",
" \n",
" with Timer() as fit_timer:\n",
" clusterer = backend.HDBSCAN(\n",
" min_samples=MIN_SAMPLES,\n",
" min_cluster_size=MIN_CLUSTER_SIZE,\n",
" metric='euclidean',\n",
" prediction_data=True\n",
" )\n",
" clusterer.fit(bench_data)\n",
" nclusters = len(np.unique(clusterer.labels_))\n",
" benchmark_payload[\"fit_time\"] = fit_timer.elapsed\n",
"\n",
" if benchmark_soft_cluster:\n",
" with Timer() as membership_timer:\n",
" soft_clusters = backend.all_points_membership_vectors(clusterer)\n",
" benchmark_payload[\"membership_time\"] = membership_timer.elapsed\n",
"\n",
" benchmark_payload[\"ncols\"] = k\n",
" benchmark_payload[\"nrows\"] = bench_data.shape[0]\n",
" benchmark_payload[\"min_samples\"] = MIN_SAMPLES\n",
" benchmark_payload[\"min_cluster_size\"] = MIN_CLUSTER_SIZE\n",
" benchmark_payload[\"num_clusters\"] = nclusters\n",
" print(benchmark_payload)\n",
"\n",
" with open(outpath, \"a\") as fh:\n",
" fh.write(json.dumps(benchmark_payload))\n",
" fh.write(\"\\n\")\n",
"\n",
" time.sleep(1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c782307b-a3fd-4587-9717-78baf736b706",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (cuml_2302_122122)",
"language": "python",
"name": "cuml_2302_122122"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}