In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. The dataset will need to be preprocessed, then train a convolutional neural network on all the samples. You'll normalize the images, one-hot encode the labels, build a convolutional layer, max pool layer, and fully connected layer. At then end, you'll see their predictions on the sample images.
This project has been written in Python 3.x.