Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sync: Go 1.21rc3, QUIC support added #207

Merged
merged 7 commits into from
Aug 2, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions alert.go
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,16 @@ package tls

import "strconv"

// An AlertError is a TLS alert.
//
// When using a QUIC transport, QUICConn methods will return an error
// which wraps AlertError rather than sending a TLS alert.
type AlertError uint8

func (e AlertError) Error() string {
return alert(e).String()
}

type alert uint8

const (
Expand Down
95 changes: 95 additions & 0 deletions cache.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tls

import (
"crypto/x509"
"runtime"
"sync"
"sync/atomic"
)

type cacheEntry struct {
refs atomic.Int64
cert *x509.Certificate
}

// certCache implements an intern table for reference counted x509.Certificates,
// implemented in a similar fashion to BoringSSL's CRYPTO_BUFFER_POOL. This
// allows for a single x509.Certificate to be kept in memory and referenced from
// multiple Conns. Returned references should not be mutated by callers. Certificates
// are still safe to use after they are removed from the cache.
//
// Certificates are returned wrapped in an activeCert struct that should be held by
// the caller. When references to the activeCert are freed, the number of references
// to the certificate in the cache is decremented. Once the number of references
// reaches zero, the entry is evicted from the cache.
//
// The main difference between this implementation and CRYPTO_BUFFER_POOL is that
// CRYPTO_BUFFER_POOL is a more generic structure which supports blobs of data,
// rather than specific structures. Since we only care about x509.Certificates,
// certCache is implemented as a specific cache, rather than a generic one.
//
// See https://boringssl.googlesource.com/boringssl/+/master/include/openssl/pool.h
// and https://boringssl.googlesource.com/boringssl/+/master/crypto/pool/pool.c
// for the BoringSSL reference.
type certCache struct {
sync.Map
}

var globalCertCache = new(certCache)

// activeCert is a handle to a certificate held in the cache. Once there are
// no alive activeCerts for a given certificate, the certificate is removed
// from the cache by a finalizer.
type activeCert struct {
cert *x509.Certificate
}

// active increments the number of references to the entry, wraps the
// certificate in the entry in an activeCert, and sets the finalizer.
//
// Note that there is a race between active and the finalizer set on the
// returned activeCert, triggered if active is called after the ref count is
// decremented such that refs may be > 0 when evict is called. We consider this
// safe, since the caller holding an activeCert for an entry that is no longer
// in the cache is fine, with the only side effect being the memory overhead of
// there being more than one distinct reference to a certificate alive at once.
func (cc *certCache) active(e *cacheEntry) *activeCert {
e.refs.Add(1)
a := &activeCert{e.cert}
runtime.SetFinalizer(a, func(_ *activeCert) {
if e.refs.Add(-1) == 0 {
cc.evict(e)
}
})
return a
}

// evict removes a cacheEntry from the cache.
func (cc *certCache) evict(e *cacheEntry) {
cc.Delete(string(e.cert.Raw))
}

// newCert returns a x509.Certificate parsed from der. If there is already a copy
// of the certificate in the cache, a reference to the existing certificate will
// be returned. Otherwise, a fresh certificate will be added to the cache, and
// the reference returned. The returned reference should not be mutated.
func (cc *certCache) newCert(der []byte) (*activeCert, error) {
if entry, ok := cc.Load(string(der)); ok {
return cc.active(entry.(*cacheEntry)), nil
}

cert, err := x509.ParseCertificate(der)
if err != nil {
return nil, err
}

entry := &cacheEntry{cert: cert}
if entry, loaded := cc.LoadOrStore(string(der), entry); loaded {
return cc.active(entry.(*cacheEntry)), nil
}
return cc.active(entry), nil
}
117 changes: 117 additions & 0 deletions cache_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tls

import (
"encoding/pem"
"fmt"
"runtime"
"testing"
"time"
)

func TestCertCache(t *testing.T) {
cc := certCache{}
p, _ := pem.Decode([]byte(rsaCertPEM))
if p == nil {
t.Fatal("Failed to decode certificate")
}

certA, err := cc.newCert(p.Bytes)
if err != nil {
t.Fatalf("newCert failed: %s", err)
}
certB, err := cc.newCert(p.Bytes)
if err != nil {
t.Fatalf("newCert failed: %s", err)
}
if certA.cert != certB.cert {
t.Fatal("newCert returned a unique reference for a duplicate certificate")
}

if entry, ok := cc.Load(string(p.Bytes)); !ok {
t.Fatal("cache does not contain expected entry")
} else {
if refs := entry.(*cacheEntry).refs.Load(); refs != 2 {
t.Fatalf("unexpected number of references: got %d, want 2", refs)
}
}

timeoutRefCheck := func(t *testing.T, key string, count int64) {
t.Helper()
c := time.After(4 * time.Second)
for {
select {
case <-c:
t.Fatal("timed out waiting for expected ref count")
default:
e, ok := cc.Load(key)
if !ok && count != 0 {
t.Fatal("cache does not contain expected key")
} else if count == 0 && !ok {
return
}

if e.(*cacheEntry).refs.Load() == count {
return
}
}
}
}

// Keep certA alive until at least now, so that we can
// purposefully nil it and force the finalizer to be
// called.
runtime.KeepAlive(certA)
certA = nil
runtime.GC()

timeoutRefCheck(t, string(p.Bytes), 1)

// Keep certB alive until at least now, so that we can
// purposefully nil it and force the finalizer to be
// called.
runtime.KeepAlive(certB)
certB = nil
runtime.GC()

timeoutRefCheck(t, string(p.Bytes), 0)
}

func BenchmarkCertCache(b *testing.B) {
p, _ := pem.Decode([]byte(rsaCertPEM))
if p == nil {
b.Fatal("Failed to decode certificate")
}

cc := certCache{}
b.ReportAllocs()
b.ResetTimer()
// We expect that calling newCert additional times after
// the initial call should not cause additional allocations.
for extra := 0; extra < 4; extra++ {
b.Run(fmt.Sprint(extra), func(b *testing.B) {
actives := make([]*activeCert, extra+1)
b.ResetTimer()
for i := 0; i < b.N; i++ {
var err error
actives[0], err = cc.newCert(p.Bytes)
if err != nil {
b.Fatal(err)
}
for j := 0; j < extra; j++ {
actives[j+1], err = cc.newCert(p.Bytes)
if err != nil {
b.Fatal(err)
}
}
for j := 0; j < extra+1; j++ {
actives[j] = nil
}
runtime.GC()
}
})
}
}
10 changes: 1 addition & 9 deletions cipher_suites.go
Original file line number Diff line number Diff line change
Expand Up @@ -379,14 +379,6 @@ var aesgcmCiphers = map[uint16]bool{
TLS_AES_256_GCM_SHA384: true,
}

var nonAESGCMAEADCiphers = map[uint16]bool{
// TLS 1.2
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305: true,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305: true,
// TLS 1.3
TLS_CHACHA20_POLY1305_SHA256: true,
}

// aesgcmPreferred returns whether the first known cipher in the preference list
// is an AES-GCM cipher, implying the peer has hardware support for it.
func aesgcmPreferred(ciphers []uint16) bool {
Expand Down Expand Up @@ -475,7 +467,7 @@ func (f *prefixNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([
return f.aead.Open(out, f.nonce[:], ciphertext, additionalData)
}

// xoredNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
// xorNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
// before each call.
type xorNonceAEAD struct {
nonceMask [aeadNonceLength]byte
Expand Down
Loading