This repository contains code for the paper "Neighbor Matching for Semi-supervised Learning", published at MICCAI 2021. The implementation is based on LatentMixing.
python main_neighbor_matching.py --augu --out Final_models/ip1@350 --epochs 256 --batch-size 128 --lr 0.0001 --schedule 50 125 --howManyLabelled 350 --lambda-u 1.0 --manualSeed 1 --noSharp --gpu 0
(For more detail, follow run.sh)
- PyTorch
- pickle
- PIL
- torchvision
- sklearn
(There might be more requirements but shouldn't be difficult to install them using conda.)
Please feel free to contact "wrzhen@stu.xjtu.edu.cn".