Figure Eight is a company that provides datasets for data analysis and delivered us a dataset with messages classified into different categories to analyze emergency response messages.
Using Machine Learning we will be able to predict the category of the message
Clean the data so that it can be used in a Machine Learning model (https://github.com/restevesd/Clasificacion/blob/master/data/process_data.py).
We use a pipeline to automate tasks and a prediction model is made. See script in (https://github.com/restevesd/Clasificacion/blob/master/models/train_classifier.py).
Execute intructions below.
To run ETL:
python data/process_data.py data/disaster_messages.csv data/disaster_categories.csv data/DisasterResponse.db
To run ML pipeline:
python models/train_classifier.py data/DisasterResponse.db models/classifier.pkl
python run.py
Go to http://0.0.0.0:3001/
-
../app - folder for web app
../app/run.py - flask web app
../templates - .html templates
-
../data - folder for files for the datasets
../data/disaster_categories.csv - raw file containing the categories
../data/disaster_messages.csv - raw file containing the messages
../data/process_data.py
../data/DisasterResponse.db - database for the clean data
-
../models - folder for the classifier model and pickle file
../models/train_classifier.py - model training script
../models/classifier.pkl - saved model when running
python train_classifier.py
-
README.md