-
Notifications
You must be signed in to change notification settings - Fork 32
/
Benchmarks.Rmd
388 lines (332 loc) · 12.4 KB
/
Benchmarks.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
---
title: "Benchmarks"
output: rmarkdown::html_vignette
date: "`r format(Sys.time(), '%d %B, %Y')`"
author: Dmitriy Selivanov
vignette: >
%\VignetteIndexEntry{Benchmarks}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
editor_options:
chunk_output_type: inline
---
```{r, include = FALSE, cache = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
results = "markup",
# to regenerate the images and clear the output, set eval = TRUE
eval = FALSE
)
```
*\*All benchmarks below are done on a pretty old Intel Xeon X3470 CPU with 4 cores, 8 threads @ 2.93GHz *. You can expect ~2x better performance on modern CPUs.
There are many tools to benchmark HTTP API. We will use [apib](https://github.com/apigee/apib) which is successor of a standard `ab` tool.
We will benchmark a very simple web service - it receives HTTP request at `/fib?n=10` and answers with fibonacci number.
## Details and methodology
Our testing RestRserve application is implemented below:
```{r bench, eval = TRUE}
calc_fib = function(n) {
if (n < 0L) stop("n should be >= 0")
if (n == 0L) return(0L)
if (n == 1L || n == 2L) return(1L)
x = rep(1L, n)
for (i in 3L:n) x[[i]] = x[[i - 1]] + x[[i - 2]]
x[[n]]
}
bench_app = function(calc_fn) {
library(RestRserve)
backend = BackendRserve$new()
app = Application$new(content_type = "text/plain")
app$logger$set_log_level("off")
app$add_get("/fib", FUN = function(request, response) {
n = as.integer(request$get_param_query("n"))
if (length(n) == 0L || is.na(n)) {
raise(HTTPError$bad_request())
}
response$set_body(list(answer = calc_fn(n)))
})
backend$start(app = app, http_port = 8080)
}
```
Sample `calc_fib()` benchmarking:
```{r eval=TRUE}
microbenchmark::microbenchmark(low = calc_fib(10), times = 10)
```
## Benchmarking Rserve backend
At the moment RestRserve supports single backend - [Rserve](http://rforge.net/Rserve/).
Configurations:
- `RestRserve` can utilize all CPU cores and process requests in parallel. We will use multiple number of threads to see how it affects performance.
- During application `RestRserve` checks `RESTRSERVE_RUNTIME_ASSERTS` environment variable. It controls the amount of input validation `RestRserve` performs internally using [checkmate](https://cran.r-project.org/web/packages/checkmate/index.html) package. Despite the fact that runtime checks comes with additional time overhead this variable is set to `TRUE` by default. We value correctness and robustness of the application at the first place. We will benchmark application with different values of `RESTRSERVE_RUNTIME_ASSERTS` to see the difference.
Code below implements allows to test combinations options:
```{r apib, message=FALSE, warning=FALSE}
library(callr)
library(data.table)
parse_apib_results = function(x) {
apib_executable_path = "apib"
#apib_executable_path = path.expand("~/projects/apib/release/apib/apib")
csv_header = system2(command = apib_executable_path,
args = "--header-line", stdout = T)
csv_header = strsplit(csv_header, ",", T)[[1]]
csv_header = c("n_threads", "fibonacci", "flavor", csv_header[-1])
if (length(x) == 1) x = paste0(x, "\n")
results = paste(x, collapse = "\n")
fread(results, col.names = csv_header)
}
run_apib = function(
n_threads = c(4, 2, 1),
n_sec = 5,
keep_alive = -1,
flavor = "",
fib_count = 10) {
apib_executable_path = "apib"
#apib_executable_path = path.expand("~/projects/apib/release/apib/apib")
results = character()
for (n_thread in n_threads) {
res = system2(
command = apib_executable_path,
args = sprintf(
"-c %d -d %d -k %d --csv-output \'http://127.0.0.1:8080/fib?n=%d\'",
n_thread, n_sec, keep_alive, fib_count
),
stdout = TRUE
)
results[[length(results) + 1]] = paste0(n_thread, ",", fib_count, ",", flavor, res)
}
results
}
apib_bench = function(
n_sec = 5,
keep_alive = -1,
fib_counts = 10,
runtime_checks = c(FALSE, TRUE)) {
results = character()
for (fib_count in fib_counts) {
for (runtime_check in runtime_checks) {
rr = r_bg(
bench_app,
list(calc_fn = calc_fib),
env = c("RESTRSERVE_RUNTIME_ASSERTS" = as.character(runtime_check))
)
# Wait for R to start
Sys.sleep(2)
flavor = if (runtime_check) "RestRserve + runtime checks" else "RestRserve"
results = c(
results,
run_apib(
n_sec = n_sec,
keep_alive = keep_alive,
flavor = flavor,
fib_count = fib_count
)
)
cat(sep = "",
"fibonacci: ", fib_count, "; flavor: ", flavor, "\n",
paste0(rr$read_output(), collapse = "\n"), "\n"
)
rr$kill_tree()
}
}
parse_apib_results(results)
}
```
```{r plot_code, echo=FALSE, message=FALSE}
library(ggplot2)
plot_results = function(x, title, file = NULL, facet = FALSE) {
colour_pal = c(
"RestRserve" = "#61D6AD",
"RestRserve + runtime checks" = "#999999",
"plumber" = "#999999",
"plumber + future" = "#000049"
)
p =
ggplot(x) +
geom_bar(aes(x = as.factor(n_threads), y = Throughput, fill = flavor),
stat = "identity", position = "dodge") +
geom_text(
aes(x = as.factor(n_threads), y = Throughput, col = flavor, label = round(Throughput)),
position = position_dodge(width = 1),
show.legend = FALSE,
vjust = -0.1
) +
scale_y_continuous(expand = expansion(mult = c(0., 0.1))) +
scale_fill_manual(values = colour_pal) +
scale_color_manual(values = colour_pal) +
theme_minimal() +
theme(
plot.title = element_text(hjust = 0.5),
legend.position = "bottom"
) +
labs(
x = "concurrent requests",
y = "requests per second",
title = title,
fill = "Runtime Checks",
col = NULL
)
if (facet) {
p = p +
facet_grid(fibonacci ~ ., scales = "free_y", labeller = function(labels) {
list(
fibonacci =
c("15" = "computation: low", "20" = "computation: medium", "25" = "computation: high")[
label_value(labels)$fibonacci
]
)
})
}
if (!is.null(file)) {
ggsave(file, p, height = 6, width = 7, dpi = 150)
}
p
}
```
```{r apib_1}
results_runtime = apib_bench(keep_alive = -1, fib_counts = 10)
```
```{r apib_1_plot, echo = FALSE}
plot_results(
results_runtime,
"RestRserve",
"../img/bench-rps.png"
)
```
<img src="https://github.com/rexyai/RestRserve/blob/master/vignettes/img/bench-rps.png?raw=true" width="640"/>
## No keep-alive
Keep in mind that creating new connections is quite expensive for any HTTP server. For `RestRserve`'s `Rserve` backend this is particularly true since for each new connection it forks a child process (which has relatively high cost). With other backends slow down might be less significant.
```{r apib_no_keep_alive}
results_no_keep_alive = apib_bench(keep_alive = 0, fib_counts = 10)
```
```{r apib_no_keep_alive_plot, echo=FALSE}
plot_results(
results_no_keep_alive,
"RestRserve - No keep-alive",
"../img/bench-rps-no-keep-alive.png"
)
```
<img src="https://github.com/rexyai/RestRserve/blob/master/vignettes/img/bench-rps-no-keep-alive.png?raw=true" width="640"/>
Nonetheless one can always put application behind proxy (such as [HAproxy](http://www.haproxy.org/) or [nginx](https://www.nginx.com/)). It will
maintain pool of connections to RestRserve and hence won't suffer from creating new connections.
## Comparison with Plumber
Support for [`promises`](https://rstudio.github.io/promises/) and [`future`](https://github.com/HenrikBengtsson/future) was added in [`plumber`](https://www.rplumber.io/) v1.0.0. Extra coding will need to be done within a plumber definition to distinguish which routes utilize promises.
We will rewrite our `calc_fib` function in a less efficient way in order to simulate different amount of computation required by handler. We will benchmark frameworks against three styles of routes (low computation, `n = 15`; medium computation, `n = 20`; high computation, `n = 25`) using multiple `apib` testing threads (1, 2, 4).
```{r calc_fib_rec, eval=TRUE}
calc_fib = function(n) {
calc_fib_rec = function(n) {
if (n < 0L) stop("n should be >= 0")
if (n == 0L) return(0L)
if (n == 1L || n == 2L) return(1L)
x = rep(1L, n)
for (i in 3L:n) x[[i]] = x[[i - 1]] + x[[i - 2]]
x[[n]]
calc_fib_rec(n - 1) + calc_fib_rec(n - 2)
}
calc_fib_rec(n)
}
```
```{r eval=TRUE}
microbenchmark::microbenchmark(
low = calc_fib(15),
medium = calc_fib(20),
high = calc_fib(25), times = 10
)
```
```{r plumber}
plumber_app = function(calc_fn, use_future = FALSE) {
if (isTRUE(use_future)) {
# multiple cores
library(future)
plan(multiprocess(workers = 4)) # max number of threads
fib_route = function(n = -1) {
n = as.integer(n)
if (is.na(n)) stop("\"n\"must be integer number.")
future({
calc_fn(n)
})
}
} else {
# single core
fib_route = function(n = -1) {
n = as.integer(n)
if (is.na(n)) stop("\"n\"must be integer number.")
calc_fn(n)
}
}
library(plumber)
pr() %>%
pr_get(
"/fib",
fib_route,
serializer = plumber::serializer_text()
) %>%
pr_run(port = 8080)
}
apib_bench_plumber = function(
n_sec = 5,
keep_alive = -1,
fib_counts = c(15, 20, 25)) {
results = character()
for (fib_count in fib_counts) {
for (use_future in list(TRUE, FALSE)) {
rr = r_bg(
plumber_app,
list(calc_fn = calc_fib, use_future = use_future),
stdout = "|", stderr = "2>&1"
)
Sys.sleep(2)
flavor = if (use_future) "plumber + future" else "plumber"
results = c(
results,
run_apib(
n_threads = c(4, 2, 1),
n_sec = n_sec,
keep_alive = keep_alive,
flavor = flavor,
fib_count = fib_count
)
)
cat(sep = "",
"fibonacci: ", fib_count, "; flavor: ", flavor, "\n",
paste0(rr$read_output(), collapse = "\n"), "\n"
)
rr$kill_tree()
}
}
parse_apib_results(results)
}
```
```{r apib_compare}
N_SEC = 10
results_restrserve = apib_bench(fib_counts = c(15, 20, 25), keep_alive = -1,
runtime_checks = FALSE, n_sec = N_SEC)
results_plumber = apib_bench_plumber(fib_counts = c(15, 20, 25), keep_alive = -1, n_sec = N_SEC)
results_compare = rbindlist(list(results_plumber, results_restrserve))
```
### Results
```{r apib_compare_plot, echo=FALSE}
plot_results(
results_compare,
"Comparison",
"../img/bench-rps-vs-plumber.png",
facet = TRUE
)
```
<img src="https://github.com/rexyai/RestRserve/blob/master/vignettes/img/bench-rps-vs-plumber.png?raw=true" width="640"/>
As can be seen `RestRserce` performs very well on every workload and scales linearly with number of cores.
### keep-alive disabled
Additionally we may explore environments where web-service exposed directly to many clients without having load balancer or proxy behind it. This is not very common across real-world deployments, but still worth to keep in mind. We can be simulate such scenario by setting `keep_alive = 0`:
```{r apib_compare_no_keepalive}
results_restrserve = apib_bench(fib_counts = c(15, 20, 25), keep_alive = 0,
runtime_checks = FALSE, n_sec = N_SEC)
results_plumber = apib_bench_plumber(fib_counts = c(15, 20, 25), keep_alive = 0, n_sec = N_SEC)
results_compare = rbindlist(list(results_plumber, results_restrserve))
```
```{r apib_compare_plot_no_keepalive, echo=FALSE}
plot_results(
results_compare,
"Comparison",
"../img/bench-rps-vs-plumber-no-keepalive.png",
facet = TRUE
)
```
<img src="https://github.com/rexyai/RestRserve/blob/master/vignettes/img/bench-rps-vs-plumber-no-keepalive.png?raw=true" width="640"/>
Due to the overhead of creating a new process for each request and [R's byte compiler overhead](https://github.com/rexyai/RestRserve/issues/149) `RestRserve` with `Rserve` backend does not perform as quickly as `plumber` when computing instantaneous routes. However, `RestRserve` still shows it's strength when executing routes that have high computational costs. No extra coding logic is needed to leverage `RestRserve`'s multi-threaded execution. Mixing `plumber` and `future` together for _high computation_ routes brings performance that scales with the number of concurrent requests, but at the cost of extra route logic and domain knowledge.