Meme Classifier
How dataset structured :
./data
> ./train
>./meme
>./not_meme
> ./validation
>./meme
>./not_meme
Training:
python3 train.py --epochs=50 --batch_size=16 --retrain=False --weight=model_weights.h5
Parameters :
epochs : Number of epochs (DEFAUT: 50)
batch_size : Batch size (DEFAUT: 16)
retrain : Retrain model from new dataset (DEFAUT: False)
weight : Weights for Retraining (DEFAUT: model_weights.h5)
Running/Testing:
python3 run.py --img=./data/test/maxresdefault.jpg --threshold=0.1 --weight=model_weights.h5
Parameters :
img : path of the image (DEFAUT: "")
threshold : Threshold value for probability (DEFAUT: 0.5)
weight : Weights for Retraining (DEFAUT: model_weights.h5)
Note : Model return probability of classes by putting threshold we can predict actual classes