-
Notifications
You must be signed in to change notification settings - Fork 728
/
cartpole_reinforce.py
146 lines (118 loc) · 5.54 KB
/
cartpole_reinforce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import sys
import gym
import pylab
import numpy as np
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import Adam
EPISODES = 1000
# This is Policy Gradient agent for the Cartpole
# In this example, we use REINFORCE algorithm which uses monte-carlo update rule
class REINFORCEAgent:
def __init__(self, state_size, action_size):
# if you want to see Cartpole learning, then change to True
self.render = False
self.load_model = False
# get size of state and action
self.state_size = state_size
self.action_size = action_size
# These are hyper parameters for the Policy Gradient
self.discount_factor = 0.99
self.learning_rate = 0.001
self.hidden1, self.hidden2 = 24, 24
# create model for policy network
self.model = self.build_model()
# lists for the states, actions and rewards
self.states, self.actions, self.rewards = [], [], []
if self.load_model:
self.model.load_weights("./save_model/cartpole_reinforce.h5")
# approximate policy using Neural Network
# state is input and probability of each action is output of network
def build_model(self):
model = Sequential()
model.add(Dense(self.hidden1, input_dim=self.state_size, activation='relu', kernel_initializer='glorot_uniform'))
model.add(Dense(self.hidden2, activation='relu', kernel_initializer='glorot_uniform'))
model.add(Dense(self.action_size, activation='softmax', kernel_initializer='glorot_uniform'))
model.summary()
# Using categorical crossentropy as a loss is a trick to easily
# implement the policy gradient. Categorical cross entropy is defined
# H(p, q) = sum(p_i * log(q_i)). For the action taken, a, you set
# p_a = advantage. q_a is the output of the policy network, which is
# the probability of taking the action a, i.e. policy(s, a).
# All other p_i are zero, thus we have H(p, q) = A * log(policy(s, a))
model.compile(loss="categorical_crossentropy", optimizer=Adam(lr=self.learning_rate))
return model
# using the output of policy network, pick action stochastically
def get_action(self, state):
policy = self.model.predict(state, batch_size=1).flatten()
return np.random.choice(self.action_size, 1, p=policy)[0]
# In Policy Gradient, Q function is not available.
# Instead agent uses sample returns for evaluating policy
def discount_rewards(self, rewards):
discounted_rewards = np.zeros_like(rewards)
running_add = 0
for t in reversed(range(0, len(rewards))):
running_add = running_add * self.discount_factor + rewards[t]
discounted_rewards[t] = running_add
return discounted_rewards
# save <s, a ,r> of each step
def append_sample(self, state, action, reward):
self.states.append(state)
self.rewards.append(reward)
self.actions.append(action)
# update policy network every episode
def train_model(self):
episode_length = len(self.states)
discounted_rewards = self.discount_rewards(self.rewards)
discounted_rewards -= np.mean(discounted_rewards)
discounted_rewards /= np.std(discounted_rewards)
update_inputs = np.zeros((episode_length, self.state_size))
advantages = np.zeros((episode_length, self.action_size))
for i in range(episode_length):
update_inputs[i] = self.states[i]
advantages[i][self.actions[i]] = discounted_rewards[i]
self.model.fit(update_inputs, advantages, epochs=1, verbose=0)
self.states, self.actions, self.rewards = [], [], []
if __name__ == "__main__":
# In case of CartPole-v1, you can play until 500 time step
env = gym.make('CartPole-v1')
# get size of state and action from environment
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# make REINFORCE agent
agent = REINFORCEAgent(state_size, action_size)
scores, episodes = [], []
for e in range(EPISODES):
done = False
score = 0
state = env.reset()
state = np.reshape(state, [1, state_size])
while not done:
if agent.render:
env.render()
# get action for the current state and go one step in environment
action = agent.get_action(state)
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
reward = reward if not done or score == 499 else -100
# save the sample <s, a, r> to the memory
agent.append_sample(state, action, reward)
score += reward
state = next_state
if done:
# every episode, agent learns from sample returns
agent.train_model()
# every episode, plot the play time
score = score if score == 500 else score + 100
scores.append(score)
episodes.append(e)
pylab.plot(episodes, scores, 'b')
pylab.savefig("./save_graph/cartpole_reinforce.png")
print("episode:", e, " score:", score)
# if the mean of scores of last 10 episode is bigger than 490
# stop training
if np.mean(scores[-min(10, len(scores)):]) > 490:
sys.exit()
# save the model
if e % 50 == 0:
agent.model.save_weights("./save_model/cartpole_reinforce.h5")