-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path285X_Competition.c
537 lines (438 loc) · 14.4 KB
/
285X_Competition.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#pragma config(Sensor, dgtl3, armEncoder, sensorQuadEncoder)
#pragma config(Sensor, dgtl1, encoder, sensorQuadEncoder)
#pragma config(Motor, port1, frontLeftDrive, tmotorVex393TurboSpeed_HBridge, openLoop)
#pragma config(Motor, port2, midLeftDrive, tmotorVex393TurboSpeed_MC29, openLoop)
#pragma config(Motor, port3, backLeftDrive, tmotorVex393TurboSpeed_MC29, openLoop)
#pragma config(Motor, port8, backRightDrive, tmotorVex393TurboSpeed_MC29, openLoop)
#pragma config(Motor, port9, midRightDrive, tmotorVex393TurboSpeed_MC29, openLoop)
#pragma config(Motor, port10, frontRightDrive, tmotorVex393TurboSpeed_HBridge, openLoop)
/*---------------------------------------------------------------------------*/
/* */
/* Description: Competition template for VEX EDR */
/* */
/*---------------------------------------------------------------------------*/
// This code is for the VEX cortex platform
#pragma platform(VEX2)
// Select Download method as "competition"
#pragma competitionControl(Competition)
//Main competition background code...do not modify!
#include "Vex_Competition_Includes.c"
//#include "drivePIDtest.c"
/*---------------------------------------------------------------------------*/
/* Pre-Autonomous Functions */
/* */
/* You may want to perform some actions before the competition starts. */
/* Do them in the following function. You must return from this function */
/* or the autonomous and usercontrol tasks will not be started. This */
/* function is only called once after the cortex has been powered on and */
/* not every time that the robot is disabled. */
/*---------------------------------------------------------------------------*/
//PID FORWARDS:
void moveForward(int power){
motor[frontLeftDrive] = power + 15;
motor[midLeftDrive] = power + 15;
motor[backLeftDrive] = -power + 15;
motor[frontRightDrive] = - power;
motor[midRightDrive] = - power;
motor[backRightDrive] = - power;
}
float cmToDegrees(float cm){
float ticks;
ticks = cm * 10.746;
return ticks;
}
void PIDForward(float target, float waitTime, float powerHardLimit = 1){ //waitTime affects accuracy, needs tuning, in ms, should be at least 200; powerHardLimit is optional and is a decimal represeenting a percentage
float Kp = 1.0; //needs to be tuned
float Ki = 0.03; //smaller for faster loops, larger for slower loops
float Kd = 0.7; //no clue about this value
int error;
int lastError;
float proportion;
int integralRaw;
float integral;
int derivative;
float integralActiveZone = cmToDegrees(8); //needs to be tested by turning off integral and seeing where proportional stops relative to target
int integralPowerLimit = 50/Ki; //set me to 50/Ki after tuning
int finalPower;
bool timerBool = true;
SensorValue[encoder] = 0;
clearTimer(T1);
if (waitTime < 200){
waitTime = 200;
}
while(time1[T1] < waitTime) { //for now
error = cmToDegrees(target) - (SensorValue[encoder]); //I think it is an average, not like in the tutorial
clearLCDLine(0);
displayLCDNumber(0, 2, error, 0);
proportion = Kp*error;
if (error < integralActiveZone && error != 0) {
integralRaw = integralRaw + error;
}
else {
integralRaw = 0;
}
if (integralRaw > integralPowerLimit) {
integralRaw = integralPowerLimit;
}
if (integralRaw < - integralPowerLimit) {
integralRaw = -integralPowerLimit;
}
integral = integralRaw*Ki;
derivative = Kd*(error - lastError);
lastError = error;
if (error == 0) {
derivative = 0;
}
finalPower = proportion + integral;
if (finalPower > powerHardLimit*127) {
finalPower = powerHardLimit*127;
}
else if (finalPower < -powerHardLimit*127) {
finalPower = -powerHardLimit*127;
}
moveForward(finalPower);
wait1Msec(40);
if (error < 32){
timerBool = false;
}
if (timerBool) {
clearTimer(T1);
}
}
displayLCDNumber(0, 2, error, 0);
moveForward(0);
}
//PID BACKWARDS:
void moveBackward(int power){
motor[frontLeftDrive] = -power;
motor[midLeftDrive] = -power;
motor[backLeftDrive] = power;
motor[frontRightDrive] = power;
motor[midRightDrive] = power;
motor[backRightDrive] = power;
}
void PIDBackward(float target, float waitTime, float powerHardLimit = 1){ //waitTime affects accuracy, needs tuning, in ms, should be at least 200; powerHardLimit is optional and is a decimal represeenting a percentage
float Kp = 1.0; //needs to be tuned
float Ki = 0.03; //smaller for faster loops, larger for slower loops
float Kd = 0.7; //no clue about this value
int error;
int lastError;
float proportion;
int integralRaw;
float integral;
int derivative;
float integralActiveZone = cmToDegrees(8); //needs to be tested by turning off integral and seeing where proportional stops relative to target
int integralPowerLimit = 50/Ki; //set me to 50/Ki after tuning
int finalPower;
bool timerBool = true;
SensorValue[encoder] = 0;
clearTimer(T1);
if (waitTime < 200){
waitTime = 200;
}
while(time1[T1] < waitTime) { //for now
error = cmToDegrees(target) - (-1* SensorValue[encoder]); //I think it is an average, not like in the tutorial
clearLCDLine(0);
displayLCDNumber(0, 2, error, 0);
proportion = Kp*error;
if (error < integralActiveZone && error != 0) {
integralRaw = integralRaw + error;
}
else {
integralRaw = 0;
}
if (integralRaw > integralPowerLimit) {
integralRaw = integralPowerLimit;
}
if (integralRaw < - integralPowerLimit) {
integralRaw = -integralPowerLimit;
}
integral = integralRaw*Ki;
derivative = Kd*(error - lastError);
lastError = error;
if (error == 0) {
derivative = 0;
}
finalPower = proportion + integral;
if (finalPower > powerHardLimit*127) {
finalPower = powerHardLimit*127;
}
else if (finalPower < -powerHardLimit*127) {
finalPower = -powerHardLimit*127;
}
moveBackward(finalPower);
wait1Msec(40);
if (error < 32){
timerBool = false;
}
if (timerBool) {
clearTimer(T1);
}
}
displayLCDNumber(0, 2, error, 0);
moveBackward(0);
}
static float pid_Kp = 2;
static float pidRequestedValue;
/*-----------------------------------------------------------------------------*/
/* pid control task */
/*-----------------------------------------------------------------------------*/
task pidController()
{
float pidSensorCurrentValue;
float pidError;
float pidDrive;
while( true )
{
// Read the sensor value and scale
pidSensorCurrentValue = SensorValue[ armEncoder ];
// calculate error
pidError = pidRequestedValue - pidSensorCurrentValue;
// calculate drive
pidDrive = (pid_Kp * pidError);
// limit drive
if( pidDrive > 127 )
pidDrive = 127;
if( pidDrive < (-127) )
pidDrive = (-127);
// send to motor
motor[ port4 ] = pidDrive;
motor[ port5 ] = pidDrive;
motor[ port6 ] = pidDrive;
motor[ port7 ] = pidDrive;
// Don't hog cpu
wait1Msec( 25 );
}
}
void pre_auton()
{
motor[port7] = -20;
motor[port6] = -20;
motor[port5] = -20;
motor[port4] = -20;
}
/*---------------------------------------------------------------------------*/
/* */
/* Autonomous Task */
/* */
/* This task is used to control your robot during the autonomous phase of */
/* a VEX Competition. */
/* */
/* You must modify the code to add your own robot specific commands here. */
/*---------------------------------------------------------------------------*/
task autonomous()
{
//Stationary Goal Auton
int armTarget;
SensorValue[armEncoder] = 0;
//lift arm 70 degrees
armTarget = 80;
while(SensorValue[armEncoder] < armTarget){
motor[port4] = motor[port5] = motor[port6] = motor[port7] = 45;
}
motor[port4] = motor[port5] = motor[port6] = motor[port7] = 0;
wait1Msec(500);
//move forward a little
PIDForward(70, 200, 0.3);
//lower arm to stack cone
SensorValue[armEncoder] = 0;
armTarget = -15;
while(SensorValue[armEncoder] > armTarget){
motor[port4] = motor[port5] = motor[port6] = motor[port7] = - 80;
}
motor[port4] = motor[port5] = motor[port6] = motor[port7] = 0;
wait1Msec(500);
//back away
PIDBackward(40, 200, 0.7);
SensorValue[armEncoder] = 0;
armTarget = -40;
while(SensorValue[armEncoder] > armTarget){
motor[port4] = motor[port5] = motor[port6] = motor[port7] = - 40;
}
}
/*---------------------------------------------------------------------------*/
/* */
/* User Control Task */
/* */
/* This task is used to control your robot during the user control phase of */
/* a VEX Competition. */
/* */
/* You must modify the code to add your own robot specific commands here. */
/*---------------------------------------------------------------------------*/
task usercontrol()
{
SensorValue[ armEncoder ] = 0;
// set initial position as the value of the pot
pidRequestedValue = SensorValue[ armEncoder ];
startTask(pidController);
//bool for button level arm mappings
bool reset = false;
bool restart = false;
bool levelOne = false;
bool stationaryLevel = false;
bool mogoUp = false;
while(true){
if(vexRT[Btn8R]){
levelOne = false;
stationaryLevel = false;
mogoUp = false;
reset = false;
restart = true;
}
if (restart){
//stopTask(pidController);
SensorValue[armEncoder] = 0;
pidRequestedValue = SensorValue[armEncoder];
startTask(pidController);
restart = false;
}
/*if(vexRT[Btn8L]){
levelOne = false;
stationaryLevel = false;
mogoUp = false;
reset = true;
}
if (reset){
stopTask(pidController);
//startTask(pidController);
reset = false;
}*/
if(vexRT[Btn8U]){
levelOne = false;
stationaryLevel = false;
mogoUp = true;
reset = false;
}
if (mogoUp){
pidRequestedValue = 30;
}
/*if(vexRT[Btn7L]){
mogoUp = false;
stationaryLevel = false;
levelOne = true;
}
if(levelOne){
pidRequestedValue = 30;
}*/
if(vexRT[Btn7U]){
levelOne = false;
mogoUp = false;
stationaryLevel = true;
reset = false;
}
if(stationaryLevel){
pidRequestedValue = 70;
}
//Drive/Joystick mappings
motor[frontLeftDrive] = vexRT[Ch3] + vexRT[Ch1];
motor[midLeftDrive] = vexRT[Ch3] + vexRT[Ch1];
motor[backLeftDrive] = -vexRT[Ch3] - vexRT[Ch1];
motor[frontRightDrive] = - vexRT[Ch3] + vexRT[Ch1];
motor[midRightDrive] = - vexRT[Ch3] + vexRT[Ch1];
motor[backRightDrive] = - vexRT[Ch3] + vexRT[Ch1];
/*
bool driveSlow = true;
while(true){
if(vexRT[Btn8L]){
driveSlow = true;
}
if(vexRT[Btn8R]){
driveSlow = false;
}
if (driveSlow){
motor[frontLeftDrive] = vexRT[Ch3];
motor[midLeftDrive] = vexRT[Ch3];
motor[backLeftDrive] = -vexRT[Ch3];
motor[frontRightDrive] = - vexRT[Ch2];
motor[midRightDrive] = - vexRT[Ch2];
motor[backRightDrive] = - vexRT[Ch2];
} else {
motor[frontLeftDrive] = vexRT[Ch3]/2;
motor[midLeftDrive] = vexRT[Ch3]/2;
motor[backLeftDrive] = - vexRT[Ch3]/2;
motor[frontRightDrive] = - vexRT[Ch2]/2;
motor[midRightDrive] = - vexRT[Ch2]/2;
motor[backRightDrive] = - vexRT[Ch2]/2;
driveSlow = false;
} */
if(vexRT[Btn5U]){
levelOne = false;
stationaryLevel = false;
mogoUp = false;
reset = false;
pidRequestedValue = pidRequestedValue + 0.01;
if (pidRequestedValue > 85){
pidRequestedValue = 85;
}
} else if (vexRT[Btn5D]){
levelOne = false;
stationaryLevel = false;
mogoUp = false;
reset = false;
/*motor[port4] = -40;
motor[port5] = -40;
motor[port6] = -40;
motor[port7] = -40;*/
pidRequestedValue = pidRequestedValue - 0.01;
if (pidRequestedValue < -15){
pidRequestedValue = -15;
}
}
else if (vexRT[Btn6U]){
levelOne = false;
stationaryLevel = false;
mogoUp = false;
reset = false;
/*motor[port4] = 63;
motor[port5] = 63;
motor[port6] = 63;
motor[port7] = 63;*/
stopTask(pidController);
motor[port4] = 80;
motor[port5] = 80;
motor[port6] = 80;
motor[port7] = 80;
while(vexRT[Btn6U]){}
motor[port4] = 0;
motor[port5] = 0;
motor[port6] = 0;
motor[port7] = 0;
SensorValue[armEncoder] = 0;
pidRequestedValue = 0;
startTask(pidController);
restart = false;
/*pidRequestedValue = pidRequestedValue + 0.03;
if (pidRequestedValue >= 80){
pidRequestedValue = 80;
}*/
} else if (vexRT[Btn6D]){
levelOne = false;
stationaryLevel = false;
mogoUp = false;
reset = false;
stopTask(pidController);
motor[port4] = -127;
motor[port5] = -127;
motor[port6] = -127;
motor[port7] = -127;
while(vexRT[Btn6D]){}
motor[port4] = 0;
motor[port5] = 0;
motor[port6] = 0;
motor[port7] = 0;
SensorValue[armEncoder] = 0;
pidRequestedValue = -5;
startTask(pidController);
restart = false;
/*pidRequestedValue = pidRequestedValue - 0.03;
if (pidRequestedValue < -15){
pidRequestedValue = -15;
}*/
} /*else {
motor[port4] = 10;
motor[port5] = 10;
motor[port6] = 10;
motor[port7] = 10;*/
}
wait1Msec( 50 );
}