generated from rom1504/python-template
-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
computing safety predictions on top of clip embeddings
- Loading branch information
Showing
1 changed file
with
62 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
from embedding_reader import EmbeddingReader | ||
import fire | ||
import os | ||
os.environ["CUDA_VISIBLE_DEVICES"] = "" | ||
import numpy as np | ||
import fsspec | ||
import math | ||
|
||
def load_safety_model(): | ||
"""load the safety model""" | ||
import autokeras as ak # pylint: disable=import-outside-toplevel | ||
from tensorflow.keras.models import load_model # pylint: disable=import-outside-toplevel | ||
from os.path import expanduser # pylint: disable=import-outside-toplevel | ||
|
||
home = expanduser("~") | ||
|
||
cache_folder = home + "/.cache/clip_retrieval" | ||
model_dir = cache_folder + "/clip_autokeras_binary_nsfw" | ||
if not os.path.exists(model_dir): | ||
os.makedirs(cache_folder, exist_ok=True) | ||
|
||
from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel | ||
|
||
path_to_zip_file = cache_folder + "/clip_autokeras_binary_nsfw.zip" | ||
url_model = ( | ||
"https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_binary_nsfw.zip" | ||
) | ||
urlretrieve(url_model, path_to_zip_file) | ||
import zipfile # pylint: disable=import-outside-toplevel | ||
|
||
with zipfile.ZipFile(path_to_zip_file, "r") as zip_ref: | ||
zip_ref.extractall(cache_folder) | ||
|
||
loaded_model = load_model(model_dir, custom_objects=ak.CUSTOM_OBJECTS) | ||
loaded_model.predict(np.random.rand(10 ** 3, 768).astype("float32"), batch_size=10 ** 3) | ||
|
||
return loaded_model | ||
|
||
|
||
def main(input_folder, output_folder, batch_size=10**6, end=None): | ||
"""main function""" | ||
reader = EmbeddingReader(input_folder) | ||
fs, relative_output_path = fsspec.core.url_to_fs(output_folder) | ||
fs.mkdirs(relative_output_path, exist_ok=True) | ||
|
||
model = load_safety_model() | ||
|
||
total = reader.count | ||
batch_count = math.ceil(total // batch_size) | ||
padding = int(math.log10(batch_count)) + 1 | ||
|
||
for i, (embeddings, ids) in enumerate(reader(batch_size=batch_size, start=0, end=end)): | ||
predictions = model.predict(embeddings, batch_size=embeddings.shape[0]) | ||
batch = np.hstack(predictions) | ||
padded_id = str(i).zfill(padding) | ||
output_file_path = os.path.join(relative_output_path, padded_id + ".npy") | ||
with fs.open(output_file_path, "wb") as f: | ||
np.save(f, batch) | ||
|
||
|
||
if __name__ == '__main__': | ||
fire.Fire(main) |