Source code for AAAI 2019 paper "Relation Structure-Aware Heterogeneous Information Network Embedding"
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
code
data/dblp
res/dblp
README.md

README.md

RHINE

Source code for AAAI 2019 paper "Relation Structure-Aware Heterogeneous Information Network Embedding"

Requirements

  • Python 2.7

  • numpy

  • scipy

  • PyTorch (0.3.0)

  • My machine with two GPUs (NVIDIA GTX-1080 *2) and two CPUs (Intel Xeon E5-2690 * 2)

Description

RHINE/
├── code
│   ├── config
│   │   ├── Config.py:configs for model.
│   │   └──_init_.py
│   ├── evaluation.py: evaluate the performance of learned embeddings w.r.t clustering and classification
│   ├── models
│   │   ├── _init_.py
│   │   ├── Model.py: the super model with some functions
│   │   └── RHINE.py: our model
│   ├── preData
│   │   └── dblpDataHelper.py: data preparation for our mode
│   ├── release
│   │   ├── Sample_ARs.so: sampling with dll
│   │   └── Sample_IRs.so
│   └── trainRHINE.py: train model
├── data
│   └── dblp
│       ├── node2id.txt: the first line is the number of nodes, (node_type+node_name, node_id)
│       ├── paper_label.txt: (node_name, label)
│       ├── relation2id.txt: the first line is the number of relations, 		   (relation_name, relation_id)
│       ├── train2id_apc.txt:  (node1_id, node2_id, relation_id, weight)
│       ├── train2id_pc.txt
│       ├── train2id_ap.txt
│       ├── train2id_pt.txt
│       ├── train2id_apt.txt
│       ├── train2id_ARs.txt: the first line is the number of ARs triples, (node1_id, node2_id, relation_id, weight)
│       └── train2id_IRs.txt
├── README.md
└── res
    └── dblp
        └── embedding.vec.ap_pt_apt+pc_apc.json: the learned embeddings 

Reference

@inproceedings{Yuanfu2019RHINE,
  title={Relation Structure-Aware Heterogeneous Information Network Embedding.},
  author={Yuanfu Lu, Chuan Shi, Linmei Hu, Zhiyuan Liu.}
  booktitle={AAAI},
  year={2019}
}