Skip to content

Attempt at decoding horus_V2 using esp32 lora

Notifications You must be signed in to change notification settings

rpratt20/rdz_ttgo_sonde_horus

 
 

Repository files navigation

rdzTTGOsonde_Horus

Current code has removed MP3H radiosonde model from the decoder list. It may or may not run for RS41 or DFM radiosondes. I Suggest this code not be used until proven to function. Integration of the CATS decoder is in progress.

This a decoder for radiosonde RS41, DFM06/09/17 with attempt to decode CATS based on a TTGO LoRa ESP32 board. Do not attempt to use the current code

It supports OLED displays (SSD1306, SH1106) and TFT displays (ILI9225, ILI9341/9342).

It also supports feeding data to external applications using WiFi (NOT bluetooth):

  • Android app by dl9rdz (see https://github.com/dl9rdz/rdzwx-go for apk download)
  • AXUDP (for aprsmap application by oe5dxl, among others)
  • KISS TNC (aprs format, mainly useful for APRSdroid app)
  • MQTT
  • SondeHub tracker
  • Chasemapper UDP (experimental)

Please consult the Wiki at https://github.com/dl9rdz/rdz_ttgo_sonde/wiki/Supported-boards for details on supported boards, and additional setup instructions.

Radiosonde Support Matrix

Manufacturer Model Position Temperature Humidity Pressure
Vaisala RS41-SG/SGP/SGM ✔️ ✔️ ✔️ ✔️ (for -SGP)
Graw DFM06/09/17 ✔️ ✔️

SondeHub integration has mainly been tested with RS41 and DFM.

Support for other radiosondes that use AFSK modulation is not feasible with the TTGO hardware. In particular, decoding iMet-1/iMet-4 radiosondes is not practical (iMet-5x seems to use FSK, so should be feasible to implement).

Adding support for LMS6 (see issue #48) and ims100 (see branch ims100) could be feasible, but currently I don't have plans to do add this myself. Well-tested pull requests will of course be considered for inclusion :-).

Installation

You can download the latest binary automated build for the development and testing branches here, the binary includes everything including configuration files so any existing settings will be reset.

To update an existing installation to the latest development or master version you can use the OTA update feature.

The downloaded .bin file can be flashed to your ESP32 board using esptool or ESP32 Download Tool

esptool

You can run the following command replacing <filename.bin> with the path to the downloaded .bin file.

If you encounter errors with the device COM not automatically being detected replace /dev/cu.SLAB_USBtoUART with COM<X>.

esptool --chip esp32 --port /dev/cu.SLAB_USBtoUART --baud 921600 --before default_reset --after hard_reset write_flash -z --flash_mode dio --flash_freq 80m --flash_size detect 0x1000 <filename.bin>

ESP32 Download Tool

The binary file can also be installed using the GUI application with the following settings.

Button commands

You can use the button on the board (not the reset button, the second one) to issue some commands. The software distinguishes between several inputs:

  • SHORT Short button press (<1.5 seconds)
  • DOUBLE Short button press, followed by another button press within 0.5 seconds
  • MID Medium-length button press (2-4 seconds)
  • LONG Long button press (>5 seconds)

You can optionally use a second button, which you have to add manually to your board. See https://github.com/dl9rdz/rdz_ttgo_sonde/wiki/Hardware-configuration for details.

Wireless configuration

On startup, as well as after a LONG button press, the WiFI configuration will be started. The board will scan available WiFi networks, if the scan results contains a WiFi network configured with ID and Password in networks.txt, it will connect to that network in station mode. If no known network is found, or the connection does not suceed after 5 seconds, it instead starts in access point mode. In both cases, the ESP32's IP address will be shown in tiny letters in the bottom line. Then the board will switch to scanning mode.

Scanning mode

In the scanning mode, the board will iterate over all channels configured in channels.txt, trying to decode a radio sonde on each channel for about 1 second. If a valid signal is found, the board switches to receiving mode on that channel. A SHORT buttong press will also switch to receiving mode.

Receiving mode

In receiving mode, a single frequency will be decoded, and sonde info (ID, GPS coordinates, RSSI) will be displayed. The bar above the IP address indicates, for the last 18 frames, if reception was successfull (|) or failed (.), or had some errors (E), e.g., CRC check failed.

A DOUBLE press will switch to scanning mode.

A SHORT press will switch to the next channel in channels.txt

A SHORT press on the second button will switch to a different display screen.

Spectrum mode

A medium press will active scan the whole band (400..406 MHz) and display a spectrum diagram (each line == 50 kHz) For TTGO boards without configurable button there are some new parameter in config.txt:

  • spectrum=10 // 0=off / 1-99 number of seconds to show spectrum after restart
  • timer=1 // 0=off / 1= show spectrum countdown timer in spectrum display
  • marker=1 // 0=off / 1= show channel edge freq in spectrum display

Setup

see Setup.md

About

Attempt at decoding horus_V2 using esp32 lora

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 47.2%
  • C 30.8%
  • Python 17.8%
  • JavaScript 2.4%
  • HTML 0.6%
  • CSS 0.6%
  • Other 0.6%