Code for paper 'Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation' early accepted by MICCAI 2019.
This is a PyTorch(1.0.1.post2) implementation of BEAL. The code was tested with Anaconda and Python 3.7.1.
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
After installing the dependency:
pip install pyyaml
pip install pytz
pip install tensorboardX==1.4 matplotlib pillow
pip install tqdm
conda install scipy==1.1.0
conda install -c conda-forge opencv
-
Clone the repo:
git clone https://github.com/emma-sjwang/BEAL.git cd BEAL
-
Install dependencies: For PyTorch dependency, see pytorch.org for more details.
For custom dependencies:
-
Configure your dataset path in train.py with parameter '--data-dir'. Dataset download link: DGS RIM-ONE Refuge
OR you can download an already preprocessed data from this link.
-
You can train deeplab v3+ using mobilenetv2 or others as backbone.
To train it, please do:
python train.py -g 0 --data-dir /data/ssd/public/sjwang/fundus_data/domain_adaptation --batch-size 8 --datasetT RIM-ONE_r3
To test it, please do: Download the weights can put them into the log folder from link.
python test.py --model-file ./logs/DGS_weights.tar --dataset Drishti-GS
@inproceedings{wang2019boundary,
title={Boundary and Entropy-driven Adversarial Learning for Fundus Image Segmentation},
author={Wang, Shujun and Yu, Lequan and Li, Kang and Yang, Xin and Fu, Chi-Wing and Heng, Pheng-Ann},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={102--110},
year={2019},
organization={Springer}
}