@@ -174,6 +174,125 @@ def uuid
174
174
"%08x-%04x-%04x-%04x-%04x%08x" % ary
175
175
end
176
176
177
+ alias uuid_v4 uuid
178
+
179
+ # Generate a random v7 UUID (Universally Unique IDentifier).
180
+ #
181
+ # require 'random/formatter'
182
+ #
183
+ # Random.uuid_v7 # => "0188d4c3-1311-7f96-85c7-242a7aa58f1e"
184
+ # Random.uuid_v7 # => "0188d4c3-16fe-744f-86af-38fa04c62bb5"
185
+ # Random.uuid_v7 # => "0188d4c3-1af8-764f-b049-c204ce0afa23"
186
+ # Random.uuid_v7 # => "0188d4c3-1e74-7085-b14f-ef6415dc6f31"
187
+ # # |<--sorted-->| |<----- random ---->|
188
+ #
189
+ # # or
190
+ # prng = Random.new
191
+ # prng.uuid_v7 # => "0188ca51-5e72-7950-a11d-def7ff977c98"
192
+ #
193
+ # The version 7 UUID starts with the least significant 48 bits of a 64 bit
194
+ # Unix timestamp (milliseconds since the epoch) and fills the remaining bits
195
+ # with random data, excluding the version and variant bits.
196
+ #
197
+ # This allows version 7 UUIDs to be sorted by creation time. Time ordered
198
+ # UUIDs can be used for better database index locality of newly inserted
199
+ # records, which may have a significant performance benefit compared to random
200
+ # data inserts.
201
+ #
202
+ # The result contains 74 random bits (9.25 random bytes).
203
+ #
204
+ # Note that this method cannot be made reproducable with Kernel#srand, which
205
+ # can only affect the random bits. The sorted bits will still be based on
206
+ # Process.clock_gettime.
207
+ #
208
+ # See draft-ietf-uuidrev-rfc4122bis[https://datatracker.ietf.org/doc/draft-ietf-uuidrev-rfc4122bis/]
209
+ # for details of UUIDv7.
210
+ #
211
+ # ==== Monotonicity
212
+ #
213
+ # UUIDv7 has millisecond precision by default, so multiple UUIDs created
214
+ # within the same millisecond are not issued in monotonically increasing
215
+ # order. To create UUIDs that are time-ordered with sub-millisecond
216
+ # precision, up to 12 bits of additional timestamp may added with
217
+ # +extra_timestamp_bits+. The extra timestamp precision comes at the expense
218
+ # of random bits. Setting <tt>extra_timestamp_bits: 12</tt> provides ~244ns
219
+ # of precision, but only 62 random bits (7.75 random bytes).
220
+ #
221
+ # prng = Random.new
222
+ # Array.new(4) { prng.uuid_v7(extra_timestamp_bits: 12) }
223
+ # # =>
224
+ # ["0188d4c7-13da-74f9-8b53-22a786ffdd5a",
225
+ # "0188d4c7-13da-753b-83a5-7fb9b2afaeea",
226
+ # "0188d4c7-13da-754a-88ea-ac0baeedd8db",
227
+ # "0188d4c7-13da-7557-83e1-7cad9cda0d8d"]
228
+ # # |<--- sorted --->| |<-- random --->|
229
+ #
230
+ # Array.new(4) { prng.uuid_v7(extra_timestamp_bits: 8) }
231
+ # # =>
232
+ # ["0188d4c7-3333-7a95-850a-de6edb858f7e",
233
+ # "0188d4c7-3333-7ae8-842e-bc3a8b7d0cf9", # <- out of order
234
+ # "0188d4c7-3333-7ae2-995a-9f135dc44ead", # <- out of order
235
+ # "0188d4c7-3333-7af9-87c3-8f612edac82e"]
236
+ # # |<--- sorted -->||<---- random --->|
237
+ #
238
+ # Any rollbacks of the system clock will break monotonicity. UUIDv7 is based
239
+ # on UTC, which excludes leap seconds and can rollback the clock. To avoid
240
+ # this, the system clock can synchronize with an NTP server configured to use
241
+ # a "leap smear" approach. NTP or PTP will also be needed to synchronize
242
+ # across distributed nodes.
243
+ #
244
+ # Counters and other mechanisms for stronger guarantees of monotonicity are
245
+ # not implemented. Applications with stricter requirements should follow
246
+ # {Section 6.2}[https://www.ietf.org/archive/id/draft-ietf-uuidrev-rfc4122bis-07.html#monotonicity_counters]
247
+ # of the specification.
248
+ #
249
+ def uuid_v7 ( extra_timestamp_bits : 0 )
250
+ case ( extra_timestamp_bits = Integer ( extra_timestamp_bits ) )
251
+ when 0 # min timestamp precision
252
+ ms = Process . clock_gettime ( Process ::CLOCK_REALTIME , :millisecond )
253
+ rand = random_bytes ( 10 )
254
+ rand . setbyte ( 0 , rand . getbyte ( 0 ) & 0x0f | 0x70 ) # version
255
+ rand . setbyte ( 2 , rand . getbyte ( 2 ) & 0x3f | 0x80 ) # variant
256
+ "%08x-%04x-%s" % [
257
+ ( ms & 0x0000_ffff_ffff_0000 ) >> 16 ,
258
+ ( ms & 0x0000_0000_0000_ffff ) ,
259
+ rand . unpack ( "H4H4H12" ) . join ( "-" )
260
+ ]
261
+
262
+ when 12 # max timestamp precision
263
+ ms , ns = Process . clock_gettime ( Process ::CLOCK_REALTIME , :nanosecond )
264
+ . divmod ( 1_000_000 )
265
+ extra_bits = ns * 4096 / 1_000_000
266
+ rand = random_bytes ( 8 )
267
+ rand . setbyte ( 0 , rand . getbyte ( 0 ) & 0x3f | 0x80 ) # variant
268
+ "%08x-%04x-7%03x-%s" % [
269
+ ( ms & 0x0000_ffff_ffff_0000 ) >> 16 ,
270
+ ( ms & 0x0000_0000_0000_ffff ) ,
271
+ extra_bits ,
272
+ rand . unpack ( "H4H12" ) . join ( "-" )
273
+ ]
274
+
275
+ when ( 0 ..12 ) # the generic version is slower than the special cases above
276
+ rand_a , rand_b1 , rand_b2 , rand_b3 = random_bytes ( 10 ) . unpack ( "nnnN" )
277
+ rand_mask_bits = 12 - extra_timestamp_bits
278
+ ms , ns = Process . clock_gettime ( Process ::CLOCK_REALTIME , :nanosecond )
279
+ . divmod ( 1_000_000 )
280
+ "%08x-%04x-%04x-%04x-%04x%08x" % [
281
+ ( ms & 0x0000_ffff_ffff_0000 ) >> 16 ,
282
+ ( ms & 0x0000_0000_0000_ffff ) ,
283
+ 0x7000 |
284
+ ( ( ns * ( 1 << extra_timestamp_bits ) / 1_000_000 ) << rand_mask_bits ) |
285
+ rand_a & ( ( 1 << rand_mask_bits ) - 1 ) ,
286
+ 0x8000 | ( rand_b1 & 0x3fff ) ,
287
+ rand_b2 ,
288
+ rand_b3
289
+ ]
290
+
291
+ else
292
+ raise ArgumentError , "extra_timestamp_bits must be in 0..12"
293
+ end
294
+ end
295
+
177
296
private def gen_random ( n )
178
297
self . bytes ( n )
179
298
end
0 commit comments