-
-
Notifications
You must be signed in to change notification settings - Fork 477
/
icf.cc
609 lines (510 loc) · 19.3 KB
/
icf.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
// This file implements the Identical Code Folding feature which can
// reduce the output file size of a typical program by a few percent.
// ICF identifies read-only input sections that happen to be identical
// and thus can be used interchangeably. ICF leaves one of them and discards
// the others.
//
// ICF is usually used in combination with -ffunction-sections and
// -fdata-sections compiler options, so that object files have one section
// for each function or variable instead of having one large .text or .data.
// The unit of ICF merging is section.
//
// Two sections are considered identical by ICF if they have the exact
// same contents, metadata such as section flags, exception handling
// records, and relocations. The last one is interesting because two
// relocations are considered identical if they point to the _same_
// section in terms of ICF.
//
// To see what that means, consider two sections, A and B, which are
// identical except for one pair of relocations. Say, A has a relocation to
// section C, and B has a relocation to D. In this case, A and B are
// considered identical if C and D are considered identical. C and D can be
// either really the same section or two different sections that are
// considered identical by ICF. Below is an example of such inputs, A, B, C
// and D:
//
// void A() { C(); }
// void B() { D(); }
// void C() { A(); }
// void D() { B(); }
//
// If we assume A and B are mergeable, we can merge C and D, which makes A
// and B mergeable. There's no contradiction in our assumption, so we can
// conclude that A and B as well as C and D are mergeable.
//
// This problem boils down to one in graph theory. Input to ICF can be
// considered as a directed graph in which vertices are sections and edges
// are relocations. Vertices have labels (section contents, etc.), and so
// are edges (relocation offsets, etc.). Two vertices are considered
// identical if and only if the (possibly infinite) their unfoldings into
// regular trees are equal. Given this formulation, we want to find as
// many identical vertices as possible.
//
// Just like a lot of problems with graph, this problem doesn't have a
// straightforward "optimal" solution, and we need to resort to heuristics.
//
// mold approaches this problem by hashing program trees with increasing depth
// on each iteration.
// For example, when we start, we only hash individual functions with
// their call into other functions omitted. From the second iteration, we
// put the function they call into the hash by appending the hash of those
// functions from the previous iteration. This means that the nth iteration
// hashes call chain up to (n-1) levels deep.
// We use a cryptographic hash function, so the unique number of hashes will
// only monotonically increase as we take into account of deeper trees with
// iterations (otherwise, that means we have found a hash collision). We stop
// when the unique number of hashes stop increasing; this is based on the fact
// that once we observe an iteration with the same amount of unique hashes as
// the previous iteration, it will remain unchanged for further iterations.
// This is provable, but here we omit the proof for brevity.
//
// When compared to other approaches, mold's approach has a relatively cheaper
// cost per iteration, and as a bonus, is highly parallelizable.
// For Chromium, mold's ICF finishes in less than 1 second with 20 threads,
// whereas lld takes 5 seconds and gold takes 50 seconds under the same
// conditions.
#include "mold.h"
#include "../sha.h"
#include <array>
#include <cstdio>
#include <tbb/concurrent_unordered_map.h>
#include <tbb/concurrent_vector.h>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_for_each.h>
#include <tbb/parallel_sort.h>
static constexpr int64_t HASH_SIZE = 16;
typedef std::array<uint8_t, HASH_SIZE> Digest;
namespace std {
template<> struct hash<Digest> {
size_t operator()(const Digest &k) const {
return *(int64_t *)&k[0];
}
};
}
namespace mold::elf {
template <typename E>
static void uniquify_cies(Context<E> &ctx) {
Timer t(ctx, "uniquify_cies");
std::vector<CieRecord<E> *> cies;
for (ObjectFile<E> *file : ctx.objs) {
for (CieRecord<E> &cie : file->cies) {
for (i64 i = 0; i < cies.size(); i++) {
if (cie.equals(*cies[i])) {
cie.icf_idx = i;
goto found;
}
}
cie.icf_idx = cies.size();
cies.push_back(&cie);
found:;
}
}
}
template <typename E>
static bool is_eligible(Context<E> &ctx, InputSection<E> &isec) {
const ElfShdr<E> &shdr = isec.shdr();
std::string_view name = isec.name();
bool is_alloc = (shdr.sh_flags & SHF_ALLOC);
bool is_exec = (shdr.sh_flags & SHF_EXECINSTR) ||
ctx.arg.ignore_data_address_equality;
bool is_relro = (name == ".data.rel.ro" ||
name.starts_with(".data.rel.ro."));
bool is_readonly = !(shdr.sh_flags & SHF_WRITE) || is_relro;
bool is_bss = (shdr.sh_type == SHT_NOBITS);
bool is_empty = (shdr.sh_size == 0);
bool is_init = (shdr.sh_type == SHT_INIT_ARRAY || name == ".init");
bool is_fini = (shdr.sh_type == SHT_FINI_ARRAY || name == ".fini");
bool is_enumerable = is_c_identifier(name);
bool is_addr_taken = !ctx.arg.icf_all && isec.address_significant;
return is_alloc && is_exec && is_readonly && !is_bss && !is_empty &&
!is_init && !is_fini && !is_enumerable && !is_addr_taken;
}
static Digest digest_final(SHA256Hash &sha) {
u8 buf[SHA256_SIZE];
sha.finish(buf);
Digest digest;
memcpy(digest.data(), buf, HASH_SIZE);
return digest;
}
template <typename E>
static bool is_leaf(Context<E> &ctx, InputSection<E> &isec) {
if (!isec.get_rels(ctx).empty())
return false;
for (FdeRecord<E> &fde : isec.get_fdes())
if (fde.get_rels(isec.file).size() > 1)
return false;
return true;
}
static u64 combine_hash(u64 a, u64 b) {
return a ^ (b + 0x9e3779b9 + (a << 6) + (a >> 2));
}
template <typename E>
struct LeafHasher {
size_t operator()(InputSection<E> *isec) const {
u64 h = hash_string(isec->contents);
for (FdeRecord<E> &fde : isec->get_fdes()) {
u64 h2 = hash_string(fde.get_contents(isec->file).substr(8));
h = combine_hash(h, h2);
}
return h;
}
};
template <typename E>
struct LeafEq {
bool operator()(InputSection<E> *a, InputSection<E> *b) const {
if (a->contents != b->contents)
return false;
std::span<FdeRecord<E>> x = a->get_fdes();
std::span<FdeRecord<E>> y = b->get_fdes();
if (x.size() != y.size())
return false;
for (i64 i = 0; i < x.size(); i++)
if (x[i].get_contents(a->file).substr(8) !=
y[i].get_contents(b->file).substr(8))
return false;
return true;
}
};
// Early merge of leaf nodes, which can be processed without constructing the
// entire graph. This reduces the vertex count and improves memory efficiency.
template <typename E>
static void merge_leaf_nodes(Context<E> &ctx) {
Timer t(ctx, "merge_leaf_nodes");
static Counter eligible("icf_eligibles");
static Counter non_eligible("icf_non_eligibles");
static Counter leaf("icf_leaf_nodes");
tbb::concurrent_unordered_map<InputSection<E> *, InputSection<E> *,
LeafHasher<E>, LeafEq<E>> map;
tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections) {
if (!isec || !isec->is_alive)
continue;
if (!is_eligible(ctx, *isec)) {
non_eligible++;
continue;
}
if (is_leaf(ctx, *isec)) {
leaf++;
isec->icf_leaf = true;
auto [it, inserted] = map.insert({isec.get(), isec.get()});
if (!inserted && isec->get_priority() < it->second->get_priority())
it->second = isec.get();
} else {
eligible++;
isec->icf_eligible = true;
}
}
});
tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections) {
if (isec && isec->is_alive && isec->icf_leaf) {
auto it = map.find(isec.get());
assert(it != map.end());
isec->leader = it->second;
}
}
});
}
template <typename E>
static Digest compute_digest(Context<E> &ctx, InputSection<E> &isec) {
SHA256Hash sha;
auto hash = [&](auto val) {
sha.update((u8 *)&val, sizeof(val));
};
auto hash_string = [&](std::string_view str) {
hash(str.size());
sha.update((u8 *)str.data(), str.size());
};
auto hash_symbol = [&](Symbol<E> &sym) {
InputSection<E> *isec = sym.get_input_section();
if (!sym.file) {
hash('1');
hash((u64)&sym);
} else if (SectionFragment<E> *frag = sym.get_frag()) {
hash('2');
hash((u64)frag);
} else if (!isec) {
hash('3');
} else if (isec->leader) {
hash('4');
hash((u64)isec->leader);
} else if (isec->icf_eligible) {
hash('5');
} else {
hash('6');
hash((u64)isec);
}
hash(sym.value);
};
hash_string(isec.contents);
hash(isec.shdr().sh_flags);
hash(isec.get_fdes().size());
hash(isec.get_rels(ctx).size());
for (FdeRecord<E> &fde : isec.get_fdes()) {
hash(isec.file.cies[fde.cie_idx].icf_idx);
// Bytes 0 to 4 contain the length of this record, and
// bytes 4 to 8 contain an offset to CIE.
hash_string(fde.get_contents(isec.file).substr(8));
hash(fde.get_rels(isec.file).size());
for (const ElfRel<E> &rel : fde.get_rels(isec.file).subspan(1)) {
hash_symbol(*isec.file.symbols[rel.r_sym]);
hash(rel.r_type);
hash(rel.r_offset - fde.input_offset);
hash(isec.file.cies[fde.cie_idx].input_section.get_addend(rel));
}
}
for (i64 i = 0; i < isec.get_rels(ctx).size(); i++) {
const ElfRel<E> &rel = isec.get_rels(ctx)[i];
hash(rel.r_offset);
hash(rel.r_type);
hash(isec.get_addend(rel));
hash_symbol(*isec.file.symbols[rel.r_sym]);
}
return digest_final(sha);
}
template <typename E>
static std::vector<InputSection<E> *> gather_sections(Context<E> &ctx) {
Timer t(ctx, "gather_sections");
// Count the number of input sections for each input file.
std::vector<i64> num_sections(ctx.objs.size());
tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections)
if (isec && isec->is_alive && isec->icf_eligible)
num_sections[i]++;
});
std::vector<i64> section_indices(ctx.objs.size());
for (i64 i = 0; i < ctx.objs.size() - 1; i++)
section_indices[i + 1] = section_indices[i] + num_sections[i];
std::vector<InputSection<E> *> sections(
section_indices.back() + num_sections.back());
// Fill `sections` contents.
tbb::parallel_for((i64)0, (i64)ctx.objs.size(), [&](i64 i) {
i64 idx = section_indices[i];
for (std::unique_ptr<InputSection<E>> &isec : ctx.objs[i]->sections)
if (isec && isec->is_alive && isec->icf_eligible)
sections[idx++] = isec.get();
});
tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
sections[i]->icf_idx = i;
});
return sections;
}
template <typename E>
static std::vector<Digest>
compute_digests(Context<E> &ctx, std::span<InputSection<E> *> sections) {
Timer t(ctx, "compute_digests");
std::vector<Digest> digests(sections.size());
tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
digests[i] = compute_digest(ctx, *sections[i]);
});
return digests;
}
// Build a graph, treating every function as a vertex and every function call
// as an edge. See the description at the top for a more detailed formulation.
// We use u32 indices here to improve cache locality.
template <typename E>
static void gather_edges(Context<E> &ctx,
std::span<InputSection<E> *> sections,
std::vector<u32> &edges,
std::vector<u32> &edge_indices) {
Timer t(ctx, "gather_edges");
if (sections.empty())
return;
std::vector<i64> num_edges(sections.size());
edge_indices.resize(sections.size());
tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
InputSection<E> &isec = *sections[i];
assert(isec.icf_eligible);
for (i64 j = 0; j < isec.get_rels(ctx).size(); j++) {
const ElfRel<E> &rel = isec.get_rels(ctx)[j];
Symbol<E> &sym = *isec.file.symbols[rel.r_sym];
if (!sym.get_frag())
if (InputSection<E> *isec = sym.get_input_section())
if (isec->icf_eligible)
num_edges[i]++;
}
});
for (i64 i = 0; i < num_edges.size() - 1; i++)
edge_indices[i + 1] = edge_indices[i] + num_edges[i];
edges.resize(edge_indices.back() + num_edges.back());
tbb::parallel_for((i64)0, (i64)num_edges.size(), [&](i64 i) {
InputSection<E> &isec = *sections[i];
i64 idx = edge_indices[i];
for (i64 j = 0; j < isec.get_rels(ctx).size(); j++) {
const ElfRel<E> &rel = isec.get_rels(ctx)[j];
Symbol<E> &sym = *isec.file.symbols[rel.r_sym];
if (!sym.get_frag())
if (InputSection<E> *isec = sym.get_input_section())
if (isec->icf_eligible)
edges[idx++] = isec->icf_idx;
}
});
}
template <typename E>
static i64 propagate(std::span<std::vector<Digest>> digests,
std::span<u32> edges, std::span<u32> edge_indices,
bool &slot, tbb::affinity_partitioner &ap) {
static Counter round("icf_round");
round++;
i64 num_digests = digests[0].size();
tbb::enumerable_thread_specific<i64> changed;
tbb::parallel_for((i64)0, num_digests, [&](i64 i) {
if (digests[slot][i] == digests[!slot][i])
return;
SHA256Hash sha;
sha.update(digests[2][i].data(), HASH_SIZE);
i64 begin = edge_indices[i];
i64 end = (i + 1 == num_digests) ? edges.size() : edge_indices[i + 1];
for (i64 j : edges.subspan(begin, end - begin)) {
sha.update(digests[slot][j].data(), HASH_SIZE);
}
digests[!slot][i] = digest_final(sha);
if (digests[slot][i] != digests[!slot][i])
changed.local()++;
}, ap);
slot = !slot;
return changed.combine(std::plus());
}
template <typename E>
static i64 count_num_classes(std::span<Digest> digests,
tbb::affinity_partitioner &ap) {
std::vector<Digest> vec(digests.begin(), digests.end());
tbb::parallel_sort(vec);
tbb::enumerable_thread_specific<i64> num_classes;
tbb::parallel_for((i64)0, (i64)vec.size() - 1, [&](i64 i) {
if (vec[i] != vec[i + 1])
num_classes.local()++;
}, ap);
return num_classes.combine(std::plus());
}
template <typename E>
static void print_icf_sections(Context<E> &ctx) {
tbb::concurrent_vector<InputSection<E> *> leaders;
tbb::concurrent_unordered_multimap<InputSection<E> *, InputSection<E> *> map;
tbb::parallel_for_each(ctx.objs, [&](ObjectFile<E> *file) {
for (std::unique_ptr<InputSection<E>> &isec : file->sections) {
if (isec && isec->is_alive && isec->leader) {
if (isec.get() == isec->leader)
leaders.push_back(isec.get());
else
map.insert({isec->leader, isec.get()});
}
}
});
tbb::parallel_sort(leaders.begin(), leaders.end(),
[&](InputSection<E> *a, InputSection<E> *b) {
return a->get_priority() < b->get_priority();
});
i64 saved_bytes = 0;
for (InputSection<E> *leader : leaders) {
auto [begin, end] = map.equal_range(leader);
if (begin == end)
continue;
SyncOut(ctx) << "selected section " << *leader;
i64 n = 0;
for (auto it = begin; it != end; it++) {
SyncOut(ctx) << " removing identical section " << *it->second;
n++;
}
saved_bytes += leader->contents.size() * n;
}
SyncOut(ctx) << "ICF saved " << saved_bytes << " bytes";
}
template <typename E>
void icf_sections(Context<E> &ctx) {
Timer t(ctx, "icf");
if (ctx.objs.empty())
return;
uniquify_cies(ctx);
merge_leaf_nodes(ctx);
// Prepare for the propagation rounds.
std::vector<InputSection<E> *> sections = gather_sections(ctx);
// We allocate 3 arrays to store hashes for each vertex.
// Index 0 and 1 are used for tree hashes from the previous iteration and the current iteration.
// They switch roles every iteration --- see `slot` below.
// Index 2 stores the initial, single-vertex hash --- this is combined with hashes from the connected vertices to
// form the tree hash described above.
std::vector<std::vector<Digest>> digests(3);
digests[0] = compute_digests<E>(ctx, sections);
digests[1].resize(digests[0].size());
digests[2] = digests[0];
std::vector<u32> edges;
std::vector<u32> edge_indices;
gather_edges<E>(ctx, sections, edges, edge_indices);
bool slot = 0;
// Execute the propagation rounds until convergence is obtained.
{
Timer t(ctx, "propagate");
tbb::affinity_partitioner ap;
// A cheap test that the graph hasn't converged yet.
// The loop after this one uses a strict condition, but it's expensive
// as it requires sorting the entire hash collection.
//
// For nodes that have a cycle in downstream (i.e. recursive
// functions and functions that calls recursive functions) will always
// change with the iterations. Nodes that doesn't (i.e. non-recursive
// functions) will stop changing as soon as the propagation depth reaches
// the call tree depth.
// Here, we test whether we have reached sufficient depth for the latter,
// which is a necessary (but not sufficient) condition for convergence.
i64 num_changed = -1;
for (;;) {
i64 n = propagate<E>(digests, edges, edge_indices, slot, ap);
if (n == num_changed)
break;
num_changed = n;
}
// Run the pass until the unique number of hashes stop increasing, at which
// point we have achieved convergence (proof omitted for brevity).
i64 num_classes = -1;
for (;;) {
// count_num_classes requires sorting which is O(n log n), so do a little
// more work beforehand to amortize that log factor.
for (i64 i = 0; i < 10; i++)
propagate<E>(digests, edges, edge_indices, slot, ap);
i64 n = count_num_classes<E>(digests[slot], ap);
if (n == num_classes)
break;
num_classes = n;
}
}
// Group sections by SHA digest.
{
Timer t(ctx, "group");
auto *map = new tbb::concurrent_unordered_map<Digest, InputSection<E> *>;
std::span<Digest> digest = digests[slot];
tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
InputSection<E> *isec = sections[i];
auto [it, inserted] = map->insert({digest[i], isec});
if (!inserted && isec->get_priority() < it->second->get_priority())
it->second = isec;
});
tbb::parallel_for((i64)0, (i64)sections.size(), [&](i64 i) {
auto it = map->find(digest[i]);
assert(it != map->end());
sections[i]->leader = it->second;
});
// Since free'ing the map is slow, postpone it.
ctx.on_exit.push_back([=] { delete map; });
}
if (ctx.arg.print_icf_sections)
print_icf_sections(ctx);
// Re-assign input sections to symbols.
{
Timer t(ctx, "reassign");
tbb::parallel_for_each(ctx.objs, [](ObjectFile<E> *file) {
for (Symbol<E> *sym : file->symbols) {
if (sym->file == file) {
InputSection<E> *isec = sym->get_input_section();
if (isec && isec->leader && isec->leader != isec) {
isec->kill();
}
}
}
});
}
}
using E = MOLD_TARGET;
template void icf_sections(Context<E> &ctx);
} // namespace mold::elf