-
Notifications
You must be signed in to change notification settings - Fork 386
/
Copy pathChatHistory.ts
240 lines (213 loc) · 7.74 KB
/
ChatHistory.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import { globalsHelper } from "./GlobalsHelper.js";
import type { SummaryPrompt } from "./Prompt.js";
import { defaultSummaryPrompt, messagesToHistoryStr } from "./Prompt.js";
import { OpenAI } from "./llm/openai.js";
import type { ChatMessage, LLM, MessageType } from "./llm/types.js";
import { extractText } from "./llm/utils.js";
/**
* A ChatHistory is used to keep the state of back and forth chat messages
*/
export abstract class ChatHistory<
AdditionalMessageOptions extends object = object,
> {
abstract get messages(): ChatMessage<AdditionalMessageOptions>[];
/**
* Adds a message to the chat history.
* @param message
*/
abstract addMessage(message: ChatMessage<AdditionalMessageOptions>): void;
/**
* Returns the messages that should be used as input to the LLM.
*/
abstract requestMessages(
transientMessages?: ChatMessage<AdditionalMessageOptions>[],
): Promise<ChatMessage<AdditionalMessageOptions>[]>;
/**
* Resets the chat history so that it's empty.
*/
abstract reset(): void;
/**
* Returns the new messages since the last call to this function (or since calling the constructor)
*/
abstract newMessages(): ChatMessage<AdditionalMessageOptions>[];
}
export class SimpleChatHistory extends ChatHistory {
messages: ChatMessage[];
private messagesBefore: number;
constructor(init?: Partial<SimpleChatHistory>) {
super();
this.messages = init?.messages ?? [];
this.messagesBefore = this.messages.length;
}
addMessage(message: ChatMessage) {
this.messages.push(message);
}
async requestMessages(transientMessages?: ChatMessage[]) {
return [...(transientMessages ?? []), ...this.messages];
}
reset() {
this.messages = [];
}
newMessages() {
const newMessages = this.messages.slice(this.messagesBefore);
this.messagesBefore = this.messages.length;
return newMessages;
}
}
export class SummaryChatHistory extends ChatHistory {
/**
* Tokenizer function that converts text to tokens,
* this is used to calculate the number of tokens in a message.
*/
tokenizer: (text: string) => Uint32Array =
globalsHelper.defaultTokenizer.encode;
tokensToSummarize: number;
messages: ChatMessage[];
summaryPrompt: SummaryPrompt;
llm: LLM;
private messagesBefore: number;
constructor(init?: Partial<SummaryChatHistory>) {
super();
this.messages = init?.messages ?? [];
this.messagesBefore = this.messages.length;
this.summaryPrompt = init?.summaryPrompt ?? defaultSummaryPrompt;
this.llm = init?.llm ?? new OpenAI();
if (!this.llm.metadata.maxTokens) {
throw new Error(
"LLM maxTokens is not set. Needed so the summarizer ensures the context window size of the LLM.",
);
}
this.tokensToSummarize =
this.llm.metadata.contextWindow - this.llm.metadata.maxTokens;
if (this.tokensToSummarize < this.llm.metadata.contextWindow * 0.25) {
throw new Error(
"The number of tokens that trigger the summarize process are less than 25% of the context window. Try lowering maxTokens or use a model with a larger context window.",
);
}
}
private async summarize(): Promise<ChatMessage> {
// get the conversation messages to create summary
const messagesToSummarize = this.calcConversationMessages();
let promptMessages;
do {
promptMessages = [
{
content: this.summaryPrompt({
context: messagesToHistoryStr(messagesToSummarize),
}),
role: "user" as MessageType,
options: {},
},
];
// remove oldest message until the chat history is short enough for the context window
messagesToSummarize.shift();
} while (
this.tokenizer(promptMessages[0].content).length > this.tokensToSummarize
);
const response = await this.llm.chat({
messages: promptMessages,
});
return { content: response.message.content, role: "memory" };
}
addMessage(message: ChatMessage) {
this.messages.push(message);
}
// Find last summary message
private getLastSummaryIndex(): number | null {
const reversedMessages = this.messages.slice().reverse();
const index = reversedMessages.findIndex(
(message) => message.role === "memory",
);
if (index === -1) {
return null;
}
return this.messages.length - 1 - index;
}
public getLastSummary(): ChatMessage | null {
const lastSummaryIndex = this.getLastSummaryIndex();
return lastSummaryIndex ? this.messages[lastSummaryIndex] : null;
}
private get systemMessages() {
// get array of all system messages
return this.messages.filter((message) => message.role === "system");
}
private get nonSystemMessages() {
// get array of all non-system messages
return this.messages.filter((message) => message.role !== "system");
}
/**
* Calculates the messages that describe the conversation so far.
* If there's no memory, all non-system messages are used.
* If there's a memory, uses all messages after the last summary message.
*/
private calcConversationMessages(transformSummary?: boolean): ChatMessage[] {
const lastSummaryIndex = this.getLastSummaryIndex();
if (!lastSummaryIndex) {
// there's no memory, so just use all non-system messages
return this.nonSystemMessages;
} else {
// there's a memory, so use all messages after the last summary message
// and convert summary message so it can be send to the LLM
const summaryMessage: ChatMessage = transformSummary
? {
content: `Summary of the conversation so far: ${this.messages[lastSummaryIndex].content}`,
role: "system",
}
: this.messages[lastSummaryIndex];
return [summaryMessage, ...this.messages.slice(lastSummaryIndex + 1)];
}
}
private calcCurrentRequestMessages(transientMessages?: ChatMessage[]) {
// TODO: check order: currently, we're sending:
// system messages first, then transient messages and then the messages that describe the conversation so far
return [
...this.systemMessages,
...(transientMessages ? transientMessages : []),
...this.calcConversationMessages(true),
];
}
async requestMessages(transientMessages?: ChatMessage[]) {
const requestMessages = this.calcCurrentRequestMessages(transientMessages);
// get tokens of current request messages and the transient messages
const tokens = requestMessages.reduce(
(count, message) =>
count + this.tokenizer(extractText(message.content)).length,
0,
);
if (tokens > this.tokensToSummarize) {
// if there are too many tokens for the next request, call summarize
const memoryMessage = await this.summarize();
const lastMessage = this.messages.at(-1);
if (lastMessage && lastMessage.role === "user") {
// if last message is a user message, ensure that it's sent after the new memory message
this.messages.pop();
this.messages.push(memoryMessage);
this.messages.push(lastMessage);
} else {
// otherwise just add the memory message
this.messages.push(memoryMessage);
}
// TODO: we still might have too many tokens
// e.g. too large system messages or transient messages
// how should we deal with that?
return this.calcCurrentRequestMessages(transientMessages);
}
return requestMessages;
}
reset() {
this.messages = [];
}
newMessages() {
const newMessages = this.messages.slice(this.messagesBefore);
this.messagesBefore = this.messages.length;
return newMessages;
}
}
export function getHistory(
chatHistory?: ChatMessage[] | ChatHistory,
): ChatHistory {
if (chatHistory instanceof ChatHistory) {
return chatHistory;
}
return new SimpleChatHistory({ messages: chatHistory });
}