Skip to content

Analyzing Adaptive Parameter Landscapes in Parameter Adaptation Methods for Differential Evolution

Notifications You must be signed in to change notification settings

ryojitanabe/APL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Analyzing Adaptive Parameter Landscapes in Parameter Adaptation Methods for Differential Evolution

This repository provides the C++ code used in the following paper:

Ryoji Tanabe, Analyzing Adaptive Parameter Landscapes in Parameter Adaptation Methods for Differential Evolution, ACM GECCO2020, pdf

This code is based on the old version of the COCO framework implemented in C (https://coco.gforge.inria.fr/):

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, Dimo Brockhoff, COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting, CoRR abs/1603.08785 (2016), link

Requirements

I compiled this code with gcc version 7.5.0 on the Ubuntu 18.04 LTS. Python (2 or 3) is needed to run "src/createfolders.py". Ruby (>=2.5) is also needed to run "src/run_de.rb", which is an optional script to perform an experiment automatically.

Usage

Compile

$ git clone https://github.com/ryojitanabe/APL.git
$ cd APL
$ make

Simple example

$ python src/createfolders.py tmp 
$ ./de -coco_func_num 1 -prosize 20 -nfe 200000 -alg shade -pop 100 -strategy current_to_pbest_1 -p_rate 0.05 -cross bin -pop_rate -1 -arc_rate 1 -memory_size 10 -num_cheat_param_sampling 50 -out_dir tmp -run_type bbob-apl-analysis -in_file dummy.dat

The first Python command creates a directory "tmp" for the procedure of the COCO framework. The second command runs a DE algorithm on the 20-dimensional 3rd function instance of f1 (the Sphere function). More precisely, the parameters of the DE are as follows:

  • Maximum number of function evaluations (nfe): 200000 (=10,000 * 20)
  • Parameter adaptation method (alg): SHADE
  • Population size (pop): 100
  • Mutation strategy (strategy): current-to-pbest/1
  • Pbest rate in current-to-pbest/1 (p_rate): 0.05
  • Crossover method (cross): binomial crossover
  • Population rate (pop_rate): -1
    • This sets the population size to "dim * pop_rate".
    • "pop\rate_=-1" means that the population size is determined by the argument "pop".
  • Archive rate (arc_rate): 1
    • The actual archive size is pop * arc_rate. Thus, in this example, 100 * 1 = 100.
  • Memory size in SHADE (memory_size): 10
  • Memory size in SHADE (num_cheat_param_sampling): 50
    • This generates 50 * 50 parameter pairs of the scale factor F and the crossover rate C.
  • Output directory (out_dir): tmp
  • Run type (run_type): bbob-apl-analysis
    • This runs DE to obtain adaptive parameter landscapes.
    • When running DE for benchmarking, it should be set to "bbob".
  • Problem instance (in_file): dummy.dat
    • This determines which function instance should be used for the experiment.

This command outputs many dat files in the "tmp" directory such as "parameters_bbob-f1_d20_9th_ranked_ind_11000th_evals_3th_run.dat". This file contains 50 * 50 parameter pairs (F and C) and their corresponding fitness improvement values (the G1 value) of the 9th ranked individual in the population at 1,000 function evaluations on the 20-dimensional 3rd function instance of f1.

Similarly, the following is the command to run a DE with the parameter adaptation method in jDE:

$ python src/createfolders.py tmp 
$ ./de -coco_func_num 1 -prosize 20 -nfe 200000 -alg jde -pop 100 -strategy current_to_pbest_1 -p_rate 0.05 -cross bin -pop_rate -1 -arc_rate 1 -tau_sf 0.1 -tau_cr 0.1 -num_cheat_param_sampling 50 -out_dir tmp -run_type bbob-apl-analysis -in_file dummy.dat

The following is also the command to run a DE with the parameter adaptation method in JADE:

$ python src/createfolders.py tmp 
$ ./de -coco_func_num 1 -prosize 20 -nfe 200000 -alg jade -pop 100 -strategy current_to_pbest_1 -p_rate 0.05 -cross bin -pop_rate -1 -arc_rate 1 -jade_learning_rate 0.1 -num_cheat_param_sampling 50 -out_dir tmp -run_type bbob-apl-analysis -in_file dummy.dat

Reproduce results presented in the GECCO paper

The Ruby script "run_de.rb" automatically performs all experiments to reproduce all results presented in the GECCO paper:

$ ruby run_de.rb

This command outputs results in the "results" directory. The Ruby script refers to a file in "median_run_ids", which provides an index number of a single run with a median performance among 15 runs for each function.

About

Analyzing Adaptive Parameter Landscapes in Parameter Adaptation Methods for Differential Evolution

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published