Pytorch implementation of "Self-supervised Vision Transformers for 3D Pose Estimation of Novel Objects"
Stefan Thalhammer, Jean-Basptiste Weibel, Markus Vincze and Jose Garcia-Rodriguez
If our project is helpful for your research, please consider citing :
@article{thalhammer2023selfsupervised,
title={Self-supervised Vision Transformers for 3D Pose Estimation of Novel Objects},
author={Thalhammer, Stefan and Weibel, Jean-Baptiste and Vincze, Markus Vincze and Garcia-Rodriguez, Jose},
journal={Image and Vision Computing},
volume={139},
pages={104816},
year={2023},
publisher={Elsevier},
}
Either setup an Anaconda environment:
conda env create -f environment.yml
conda activate template
or a Docker container. Please modify the paths in ''docker_launch.sh'' and run:
./docker_launch.sh
Please refer to this repo, or to this branch for data retrieval.
./train_vit_LM_splits.sh
python train_tless.py --config_path ./config_run/TLESS.json
python vizualize_SA.py --config_path config_run/<config_file> --pretrained_weights <your_weights>.pth --image_path <image_to_visualize_SA>.png --mask_path <corresponding_template_mask.png --output_dir <path_to_safe_SA> --threshold 0.75
The code is adapted from template-pose. Please also cite the original paper if the provided code is used:
@inproceedings{nguyen2022template,
title={Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions},
author={Nguyen, Van Nguyen and Hu, Yinlin and Xiao, Yang and Salzmann, Mathieu and Lepetit, Vincent},
booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
year={2022}}