Skip to content

sail-sg/BindDiffusion

Repository files navigation

BindDiffusion: One Diffusion Model to Bind Them All

Inspired by the recent progress in multimodality learning (ImageBind), we explore the idea of using one single diffusion model for multimodality-based image generation. Noticeably, we leverage a pre-trained diffusion model to comsume conditions from diverse or even mixed modalities. This design allows many novel applications, such as audio-to-image, without any additional training. This repo is still under development. Please stay tuned!

Acknowledgement: This repo is based on the following amazing projects: Stable Diffusion, ImageBind.

Install

pip install -r requirements.txt

Pretrained checkpoints

cd checkpoints;
wget https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip/blob/main/sd21-unclip-h.ckpt;
wget https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth;

Image-conditioned generation:

python main_bind.py --prompt <prompt> --device cuda --modality image \
--H 768 --W 768 \ 
--config ./configs/stable-diffusion/v2-1-stable-unclip-h-bind-inference.yaml \
--ckpt ./checkpoints/sd21-unclip-h.ckpt \
--noise-level <noise-level> --init <init-img> --strength <strength-level>

t2i t2i

Audio-conditioned generation:

python main_bind.py --prompt <prompt> --device cuda --modality audio \
--H 768 --W 768 \
--config ./configs/stable-diffusion/v2-1-stable-unclip-h-bind-inference.yaml \
--ckpt ./checkpoints/sd21-unclip-h.ckpt \
--strength <strength-level> --noise-level <noise-level> --init <init-audio>

t2i t2i t2i t2i t2i t2i

Naive mixed-modality generation:

python main_multi_bind.py --prompt <prompt> --device cuda \
--H 768 --W 768 \
--config ./configs/stable-diffusion/v2-1-stable-unclip-h-bind-inference.yaml \
--ckpt ./checkpoints/sd21-unclip-h.ckpt \
--noise-level <noise-level> --init-image <init-img> --init-audio <init-audio> \
--alpha <alpha>

t2i t2i t2i t2i

Contributors

We welcome contributions and suggestions from anyone interested in this fun project!

Feel free to explore the profiles of our contributors:

We appreciate your interest and look forward to your involvement!

About

BindDiffusion: One Diffusion Model to Bind Them All

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published