Skip to content

sbrf248/data-generation-for-treatment-effect

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

data-generation-for-treatment-effect

An implementation of a data generation process for treatment effect estimation from [Powers, 2018]

[Powers, 2018] Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H. Shah, Trevor Hastie, Robert Tibshirani. (2018). "Some methods for heterogeneous treatment effect estimation in high-dimensions." Statics in Medicine, 37(11): 1767--1787.

Usage

from generator import generate_data

# Select scenario, the number of data (patients) and the number of features for generating data.
x, t, y, treatment_response, control_response = generate_data(4, 200, 100)

# True CATE can be obtained by substracting control_response from treatment_response.
true_conditional_treatment_effect = treatment_response - control_response

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages