Skip to content

scpark20/DGM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative models with tensorflow version 2.0 style

  • Final update: 2019. 12. 1.
  • All right reserved @ Il Gu Yi, Soochul Park

This repository is a collection of various generative models (GAN, VAE, Normalizing flow, Autoregressive models, etc) implemented by TensorFlow version 2.0 style

Getting Started

Prerequisites

  • TensorFlow 2.0
  • Python 3.6
  • Python libraries:
    • numpy, matplotlib, PIL, imageio
    • urllib, zipfile
  • TensorFlow libraries & extensions:
  • Jupyter notebook
  • OS X and Linux (Not validated on Windows OS)

Contents

Generative Adversarial Networks (GANs) [with MNIST and Fashion MNIST]

DCGAN (Deep Convolutional GAN)

MNIST Fashion MNIST

Conditional GAN

MNIST
Fashion MNIST

LSGAN

MNIST Fashion MNIST

BiGAN

MNIST
Fashion MNIST

Wasserstein GAN

MNIST Fashion MNIST

WGAN-GP

MNIST Fashion MNIST

Pix2Pix (Image Translation)

facades
cityspaces

CycleGAN (Unpaired Image Translation)

Latent Variable Models [with MNIST]

AutoEncoder (actually not generative model)

MNIST
Fashion MNIST

Denosing AutoEncoder

AutoRegressive Models [with MNIST]

Fully Visible Sigmoid Belief Networks

MNIST Fashion MNIST

Neural Autoregressive Density Estimation

MNIST Fashion MNIST

Transformer with MNIST

MNIST

LSTM with MNIST

MNIST

Normalizing Flow Models [with MNIST]

NICE: Non-Linear Independent Components Estimation

Author

Il Gu Yi, Soochul Park

Slides

Notion link

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.5%
  • Python 0.5%