Official pytorch implementation for "Multiscale Progressive Fusion of Infrared and Visible Images"
Testing samples: Download from GoogleDrive
The ZIP file contains three test datasets:
- KAIST dataset: 200 image pairs
- TNO dataset: 20 image pairs
- RoadScene dataset: 221 image pairs
Pretrained weights: Download from GoogleDrive
The ZIP file contains two pretrained weights:
- IR_Net_model.pth: pretrained weight of IRNet
- Fusion_Net_model.pth: pretrained weight of FusionNet
If you find this work useful for your research, please consider citing our paper:
@article{Park2022,
author={Park, Seonghyun and Lee, Chul},
booktitle={IEEE Access},
title={Multiscale Progressive Fusion of Infrared and Visible Images},
year={2022},
volume={10},
number={},
pages={126117-126132},
doi={10.1109/ACCESS.2022.3226564}}
}
See MIT License