**Sferes2 module** A lightweight simulator of a wheeled robot (khepera-like)
C++ Python
Switch branches/tags
Nothing to show
Clone or download
jbmouret Merge pull request #3 from sferes2/laser_min
modified laser pixel min/max
Latest commit 3c6f39d Jan 21, 2017
Permalink
Failed to load latest commit information.
README.md updated readme Apr 14, 2014
cuisine.pbm initial import Apr 14, 2014
display.cpp compilation with the new waf Apr 15, 2016
display.hpp merge with master Apr 15, 2016
fastsim.hpp initial import Apr 14, 2014
fastsim_keyboard.cpp compilation with the new waf Apr 15, 2016
goal.hpp indent Apr 15, 2016
illuminated_switch.hpp indent Apr 15, 2016
laser.cpp modified laser pixel min/max Jan 21, 2017
laser.hpp indent Apr 15, 2016
light_sensor.cpp indent Apr 15, 2016
light_sensor.hpp indent Apr 15, 2016
linear_camera.cpp indent Apr 15, 2016
linear_camera.hpp indent Apr 15, 2016
main.cpp indent Apr 15, 2016
map.cpp merge with master Apr 15, 2016
map.hpp indent Apr 15, 2016
misc.hpp indent Apr 15, 2016
posture.hpp indent Apr 15, 2016
radar.cpp indent Apr 15, 2016
radar.hpp indent Apr 15, 2016
robot.cpp indent Apr 15, 2016
robot.hpp indent Apr 15, 2016
simu_fastsim.hpp indent Apr 15, 2016
test_fastsim.cpp compilation with the new waf Apr 15, 2016
wscript modified wscript so that the test compiles. May 28, 2016

README.md

fastsim

This is a Sferes2 module

Fastsim is a fast, lightweight simulator of a wheeled robot (khepera-like).

If you use this software in an academic article, please cite:

Mouret, J.-B. and Doncieux, S. (2012). Encouraging Behavioral Diversity in Evolutionary Robotics: an Empirical Study. Evolutionary Computation. Vol 20 No 1 Pages 91-133.

Usage & installation

  • copy fastsim to the "modules" directory in the sferes2 root directory.
  • add fastsim in modules.conf in the sferes2 root directory
  • run ./waf configure and ./waf build

Depedencies:

  • SDL 1.2 (can be deactivated)

Academic papers that use faststim

  • Koos, S. and Mouret, J.-B. and Doncieux, S. (2013). The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics. IEEE Transactions on Evolutionary Computation. Vol 17 No 1 Pages 122 - 145
  • Doncieux, S. (2013). Transfer Learning for Direct Policy Search: A Reward Shaping Approach. Proceedings of ICDL-EpiRob conference. Pages 1-6.
  • Doncieux, S. and Mouret, J.B. (2013). Behavioral Diversity with Multiple Behavioral Distances. Proc. of IEEE Congress on Evolutionary Computation, 2013 (CEC 2013). Pages 1-8.
  • Mouret, J.-B. and Doncieux, S. (2012). Encouraging Behavioral Diversity in Evolutionary Robotics: an Empirical Study. Evolutionary Computation. Vol 20 No 1 Pages 91-133.
  • Mouret, J.-B. (2011). Novelty-based Multiobjectivization. New Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob Workshop, Springer, publisher. Pages 139--154.
  • Pinville, T. and Koos, S. and Mouret, J-B. and Doncieux, S. (2011). How to Promote Generalisation in Evolutionary Robotics: the ProGAb Approach. GECCO'11: Proceedings of the 13th annual conference on Genetic and evolutionary computation ACM, publisher . Pages 259--266.
  • Koos, S. and Mouret, J.-B. and Doncieux, S. (2010). Crossing the Reality Gap in Evolutionary Robotics by Promoting Transferable Controllers. GECCO'10: Proceedings of the 12th annual conference on Genetic and evolutionary computation ACM, publisher . Pages 119--126.
  • Doncieux, S. and Mouret, J.-B. (2010). Behavioral diversity measures for Evolutionary Robotics. WCCI 2010 IEEE World Congress on Computational Intelligence, Congress on Evolutionary Computation (CEC). Pages 1303--1310.
  • Mouret, J.-B. and Doncieux, S. (2009). Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. IEEE Congress on Evolutionary Computation, 2009 (CEC 2009). Pages 1161 - 1168.