Skip to content
/ BCQ Public

Author's PyTorch implementation of BCQ for continuous and discrete actions

License

Notifications You must be signed in to change notification settings

sfujim/BCQ

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Batch-Constrained Deep Q-Learning (BCQ)

Batch-Constrained deep Q-learning (BCQ) is the first batch deep reinforcement learning, an algorithm which aims to learn offline without interactions with the environment.

BCQ was first introduced in our ICML 2019 paper which focused on continuous action domains. A discrete-action version of BCQ was introduced in a followup Deep RL workshop NeurIPS 2019 paper. Code for each of these algorithms can be found under their corresponding folder.

Bibtex

@inproceedings{fujimoto2019off,
  title={Off-Policy Deep Reinforcement Learning without Exploration},
  author={Fujimoto, Scott and Meger, David and Precup, Doina},
  booktitle={International Conference on Machine Learning},
  pages={2052--2062},
  year={2019}
}
@article{fujimoto2019benchmarking,
  title={Benchmarking Batch Deep Reinforcement Learning Algorithms},
  author={Fujimoto, Scott and Conti, Edoardo and Ghavamzadeh, Mohammad and Pineau, Joelle},
  journal={arXiv preprint arXiv:1910.01708},
  year={2019}
}

About

Author's PyTorch implementation of BCQ for continuous and discrete actions

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages