Skip to content

One Detector to Rule Them All: Towards a General Deepfake Attack Detection Framework

License

Notifications You must be signed in to change notification settings

shahroztariq/CLRNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Notice

Update 2024: CLRNet, ShallowNet, MesoInception4, and Xception weights are now available to download from the Google Drive link below.

update 2022: CLRNet Files and weights are temporarily removed. Contact the authors via email for access.

Overview

Title: One Detector to Rule Them All: Towards a General Deepfake Attack Detection Framework (WWW '21) (arXiv)

CLRNet-pipeline

Citation

If you find our work useful for your research, please consider citing the following papers :)

@inproceedings{tariq2021web,
  title={One Detector to Rule Them All: Towards a General Deepfake Attack Detection Framework},
  author={Tariq, Shahroz and Lee, Sangyup and Woo, Simon S},
  booktitle={Proceedings of The Web Conference 2021},
  year={2021},
  url = {https://doi.org/10.1145/3442381.3449809},
  doi = {10.1145/3442381.3449809}
}

Pretrained weights

The following link contains the weights for the models (CLRNet [CLR], ShallowNetV3 [SNV3], MesoInception4 [M14], and Xception [XCE]) used in our experiments

https://drive.google.com/drive/folders/1CE-HzZh76ejAsrIFSlbaEGmQHyzoj9EQ?usp=sharing

Additional Results

Updated in-domain attack results including DFDC dataset

  • Note that CLRNet performs the best for DFDC dataset among all the test baselines.

Table3

Updated out-of-domain attack results (before using our defense strategy)

  • Note that results from Table 5 demonstrates that models trained on DFDC, which is a quite generic and diverse dataset, can still fail to detect out-of-domain attack (see Table 5).
  • See Table 6 in our paper, for defense performance against out-of-domain attack.

Supplementary-DFDC-OOD

Dataset used for Evaluation

Models used for Evaluation

About

One Detector to Rule Them All: Towards a General Deepfake Attack Detection Framework

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published