动态更新学习中实现或者阅读过的计算广告相关论文、学习资料和业界分享,作为自己学习的总结,也希望能为计算广告相关行业的同学带来便利。 同时欢迎对CTR Prediction感兴趣的同学与我(杜博亚)讨论相关问题,我的联系方式如下:
- Email: duboyabz@163.com
- 知乎私信: 杜博亚的知乎
- 个人博客: https://blog.csdn.net/dby_freedom?t=1
其中,个人博客收录了本人关于CTR的理论、实践总结,欢迎访问、关注~
Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给出直观解释的文章
- Google Vizier A Service for Black-Box Optimization.pdf Google的深度学习自动调参框架Vizier
- 在线最优化求解(Online Optimization)-冯扬.pdf 非常推荐冯扬的这个教程,把在线优化问题讲的非常透
- Hogwild A Lock-Free Approach to Parallelizing Stochastic Gradient Descent.pdf
- Parallelized Stochastic Gradient Descent.pdf
- A Survey on Algorithms of the Regularized Convex Optimization Problem.pptx
- Follow-the-Regularized-Leader and Mirror Descent- Equivalence Theorems and L1 Regularization.pdf
- A Review of Bayesian Optimization.pdf
- Taking the Human Out of the Loop- A Review of Bayesian Optimization.pdf
- 非线性规划.doc
- [LR] Predicting Clicks - Estimating the Click-Through Rate for New Ads (Microsoft 2007)
- [FFM] Field-aware Factorization Machines for CTR Prediction (Criteo 2016)
- [GBDT+LR] Practical Lessons from Predicting Clicks on Ads at Facebook (Facebook 2014)
- [PS-PLM] Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction (Alibaba 2017)
- [FTRL] Ad Click Prediction a View from the Trenches (Google 2013)
- [FM] Fast Context-aware Recommendations with Factorization Machines (UKON 2011)
- [DCN] Deep & Cross Network for Ad Click Predictions (Stanford 2017)
- [Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features (Microsoft 2016)
- [PNN] Product-based Neural Networks for User Response Prediction (SJTU 2016)
- [DIN] Deep Interest Network for Click-Through Rate Prediction (Alibaba 2018)
- [ESMM] Entire Space Multi-Task Model - An Effective Approach for Estimating Post-Click Conversion Rate (Alibaba 2018)
- [Wide & Deep] Wide & Deep Learning for Recommender Systems (Google 2016)
- [xDeepFM] xDeepFM - Combining Explicit and Implicit Feature Interactions for Recommender Systems (USTC 2018)
- [Image CTR] Image Matters - Visually modeling user behaviors using Advanced Model Server (Alibaba 2018)
- [AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks (ZJU 2017)
- [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
- [DSSM] Learning Deep Structured Semantic Models for Web Search using Clickthrough Data (UIUC 2013)
- [FNN] Deep Learning over Multi-field Categorical Data (UCL 2016)
- [DeepFM] A Factorization-Machine based Neural Network for CTR Prediction (HIT-Huawei 2017)
- [NFM] Neural Factorization Machines for Sparse Predictive Analytics (NUS 2017)
- [Negative Sampling] Word2vec Explained Negative-Sampling Word-Embedding Method (2014)
- [SDNE] Structural Deep Network Embedding (THU 2016)
- [Item2Vec] Item2Vec-Neural Item Embedding for Collaborative Filtering (Microsoft 2016)
- [Word2Vec] Distributed Representations of Words and Phrases and their Compositionality (Google 2013)
- [Word2Vec] Word2vec Parameter Learning Explained (UMich 2016)
- [Node2vec] Node2vec - Scalable Feature Learning for Networks (Stanford 2016)
- [Graph Embedding] DeepWalk- Online Learning of Social Representations (SBU 2014)
- [Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
- [Alibaba Embedding] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (Alibaba 2018)
- [Word2Vec] Efficient Estimation of Word Representations in Vector Space (Google 2013)
- [LINE] LINE - Large-scale Information Network Embedding (MSRA 2015)
树模型和基于树模型的boosting模型,树模型的效果在大部分问题上非常好,在CTR,CVR预估及特征工程方面的应用非常广
- Introduction to Boosted Trees
- Classification and Regression Trees
- Greedy Function Approximation A Gradient Boosting Machine
- Classification and Regression Trees
广告系统的架构问题
- [TensorFlow Whitepaper]TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems
- 大数据下的广告排序技术及实践
- 美团机器学习 吃喝玩乐中的算法问题
- [Parameter Server]Scaling Distributed Machine Learning with the Parameter Server
- Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting
- A Comparison of Distributed Machine Learning Platforms
- Efficient Query Evaluation using a Two-Level Retrieval Process
- [TensorFlow Whitepaper]TensorFlow- A System for Large-Scale Machine Learning
- [Parameter Server]Parameter Server for Distributed Machine Learning
- Overlapping Experiment Infrastructure More, Better, Faster Experimentation
[1] https://github.com/wzhe06/Ad-papers/blob/master/README.md [2] https://github.com/duboya/ML_CIA