Skip to content

shankarsivarajan/colorio_foss

 
 

Repository files navigation

colorio_foss

Illuminants, observers, white points

Illuminants CIE 1931 Observer
import colorio
import matplotlib.pyplot as plt

illu = colorio.illuminants.d65()
plt.plot(illu.lmbda_nm, illu.data)
plt.xlabel("wavelength [nm]")
plt.show()

The following illuminants are provided:

  • Illuminant A ("indoor light", colorio.illuminants.a(resolution_in_nm))
  • Illuminant C (obsolete, "North sky daylight", colorio.illuminants.c())
  • Illuminants D ("natural daylight", colorio.illuminants.d(nominal_temp) or colorio.illuminants.d65() etc.)
  • Illuminant E (equal energy, colorio.illuminants.e())
  • Illuminant series F ("fluorescent lighting", colorio.illuminants.f2() etc.)

Observers:

  • CIE 1931 Standard 2-degree observer (colorio.observers.colorio.observers.cie_1931_2())
  • CIE 1964 Standard 10-degree observer (colorio.observers.colorio.observers.cie_1964_10())

Color coordinates and spaces

Color coordinates are handled as NumPy arrays or as ColorCoordinates, a thin wrapper around the data that retains the color space information and has some handy helper methods. Color spaces can be instantiated from the classes in colorio.cs, e.g.,

import colorio

colorio.cs.CIELAB()

Most methods that accept such a colorspace also accept a string, e.g., cielab.

As an example, to interpolate two sRGB colors in OKLAB, and return the sRGB:

from colorio.cs import ColorCoordinates

# you can also plug in large numpy arrays instead of two lists here
c0 = ColorCoordinates([1.0, 1.0, 0.0], "srgb1")  # yellow
c1 = ColorCoordinates([0.0, 0.0, 1.0], "srgb1")  # blue

# naive interpolation gives [0.5, 0.5, 0.5], a mid gray

# convert to OKLAB
c0.convert("oklab")
c1.convert("oklab")

# interpolate
c2 = (c0 + c1) * 0.5

c2.convert("srgbhex", mode="clip")

print(c2.color_space)
print(c2.data)
<colorio color space sRGB-hex>
#6cabc7

All color spaces implement the two methods

vals = colorspace.from_xyz100(xyz)
xyz = colorspace.to_xyz100(vals)

for conversion from and to XYZ100. Adding new color spaces is as easy as writing a class that provides those two methods. The following color spaces are already implemented:

  • XYZ (colorio.cs.XYZ(100), the parameter determining the scaling)

  • xyY (colorio.cs.XYY(100), the parameter determining the scaling of Y)

  • sRGB (colorio.cs.SRGBlinear(), colorio.cs.SRGB1(), colorio.cs.SRGB255(), colorio.cs.SRGBhex())

  • HSL and HSV (colorio.cs.HSL(), colorio.cs.HSV()) These classes have the two methods

    from_srgb1()
    to_srgb1()
    

    for conversion from and to standard RGB.

  • OSA-UCS (colorio.cs.OsaUcs())

  • CIELAB (colorio.cs.CIELAB())

  • CIELUV (colorio.cs.CIELUV())

  • RLAB (colorio.cs.RLAB())

  • DIN99 and its variants DIN99{b,c,d} (colorio.cs.DIN99())

  • ICtCp (colorio.cs.ICtCp())

  • IPT (colorio.cs.IPT())

  • CIECAM02 / CAM02-UCS

    import math
    import colorio
    
    ciecam02 = colorio.cs.CIECAM02(0.69, 20, 100)
    cam02 = colorio.cs.CAM02("UCS", 0.69, 20, 100)

    The implementation contains a few improvements over the CIECAM02 specification (see here).

  • CAM16 / CAM16-UCS

    import math
    import colorio
    
    cam16 = colorio.cs.CAM16(0.69, 20, 100)
    cam16ucs = colorio.cs.CAM16UCS(0.69, 20, 100)

    The implementation contains a few improvements over the CAM16 specification (see here).

  • Jzazbz (colorio.cs.JzAzBz())

  • Oklab (colorio.cs.OKLAB())

  • proLab (colorio.cs.PROLAB())

  • SRLAB2 (colorio.cs.SRLAB2())

All methods in colorio are fully vectorized, i.e., computation is really fast.

Color difference formulas

colorio implements the following color difference formulas:

  • CIE76
    colorio.diff.cie76(lab1, lab2)
  • CIE94
    colorio.diff.cie94(lab1, lab2)
  • CIEDE2000
    colorio.diff.ciede2000(lab1, lab2)
  • CMC l:c
    colorio.diff.cmc(lab1, lab2)

Chromatic adaptation transforms

colorio implements the following CATs:

  • von Kries
    cat, cat_inv = colorio.cat.von_kries(whitepoint_source, whitepoint_destination)
    xyz1 = cat @ xyz0
  • Bradford (colorio.cat.bradford)
  • sharp (colorio.cat.sharp)
  • CMCCAT2000 (colorio.cat.cmccat2000)
  • CAT02 (colorio.cat.cat02)
  • CAT16 (colorio.cat.cat16)
  • Bianco-Schettini (colorio.cat.bianco_schettini)

Gamut visualization

colorio provides a number of useful tools for analyzing and visualizing color spaces.

sRGB gamut

CIELAB CAM16-UCS Oklab

The sRGB gamut is a perfect cube in sRGB space, and takes curious shapes when translated into other color spaces. The above images show the sRGB gamut in different color spaces.

import colorio

p = colorio.plot_rgb_gamut(
    "cielab",  # or colorio.cs.CIELAB()
    n=51,
    show_grid=True,
)
p.show()

For more visualization options, you can store the sRGB data in a file

import colorio

colorio.save_rgb_gamut("srgb.vtk", "cielab", n=51)
# all formats supported by https://github.com/nschloe/meshio

and open it with a tool of your choice. See here for how to open the file in ParaView.

For lightness slices of the sRGB gamut, use

import colorio

p = colorio.plot_rgb_slice("cielab", lightness=50.0, n=51)
p.show()
# or
# p.screenshot("screenshot.png")

Surface color gamut

XYZ CIELAB CAM16-UCS

Same as above, but with the surface color gamut visible under a given illuminant.

import colorio

illuminant = colorio.illuminants.d65()
observer = colorio.observers.cie_1931_2()

p = colorio.plot_surface_gamut(
    "xyz100",  # or colorio.cs.XYZ(100)
    observer,
    illuminant,
)
p.show()

The gamut is shown in grey since sRGB screens are not able to display the colors anyway.

The visible gamut

xyY JzAzBz Oklab

Same as above, but with the gamut of visible colors up to a given lightness Y.

import colorio

observer = colorio.observers.cie_1931_2()

colorspace = colorio.cs.XYZ(100)

p = colorio.plot_visible_gamut(colorspace, observer, max_Y1=1)
p.show()

The gamut is shown in grey since sRGB screens are not able to display the colors anyway.

For slices, use

import colorio

plt = colorio.plot_visible_slice("cielab", lightness=0.5)
plt.show()

Color gradients

With colorio, you can easily visualize the basic color gradients of any color space. This may make defects in color spaces obvious, e.g., the well-known blue-distortion of CIELAB and related spaces. (Compare with the hue linearity data below.)

import colorio

plt = colorio.plot_primary_srgb_gradients("cielab")
plt.show()
CIELAB DIN99 OKLAB

Experimental data

colorio contains lots of experimental data sets some of which can be used to assess certain properties of color spaces. Most data sets can also be visualized.

Color differences

xyY CIELAB CAM16

Color difference data from MacAdam (1974). The above plots show the 43 color pairs that are of comparable lightness. The data is matched perfectly if the facing line stubs meet in one point.

import colorio

data = colorio.data.MacAdam1974()

cs = colorio.cs.CIELAB

plt = data.plot(cs)
plt.show()
print(colorio.data.MacAdam1974().stress(cs))
24.54774029343344

The same is available for

colorio.data.BfdP()
colorio.data.Leeds()
colorio.data.RitDupont()
colorio.data.Witt()

colorio.data.COMBVD()  # a weighted combination of the above

Munsell

xyY CIELAB CAM16

Munsell color data is visualized with

import colorio

cs = colorio.cs.CIELUV
plt = colorio.data.Munsell().plot(cs, V=5)
plt.show()

To retrieve the Munsell data in xyY format, use

import colorio

munsell = colorio.data.Munsell()

# munsell.h
# munsell.V
# munsell.C
# munsell.xyy

Ellipses

MacAdam ellipses (1942)
xyY (at Y=0.4) CIELAB (at L=50) CAM16 (at L=50)

The famous MacAdam ellipses (from this article) can be plotted with

import colorio

cs = colorio.cs.CIELUV
plt = colorio.data.MacAdam1942(50.0).plot(cs)
plt.show()

The better the colorspace matches the data, the closer the ellipses are to circles of the same size.

Luo-Rigg ellipses
xyY CIELAB CAM16

Likewise for Luo-Rigg.

import colorio

# xyy = colorio.cs.XYY(100)
# colorio.data.LuoRigg(8).show(xyy, 0.4)
# colorio.data.LuoRigg(8).savefig("luo-rigg-xyy.png", xyy, 0.4)

cieluv = colorio.cs.CIELUV()
plt = colorio.data.LuoRigg(8).plot(cieluv, 50)
plt.show()

Hue linearity

Ebner-Fairchild
xyY CIELAB CAM16

For example

import colorio

colorspace = colorio.cs.JzAzBz
plt = colorio.data.EbnerFairchild().plot(colorspace)
plt.show()

shows constant-hue data from the Ebner-Fairchild experiments in the hue-plane of some color spaces. (Ideally, all colors in one set sit on a line.)

Hung-Berns

Likewise for Hung-Berns:

xyY CIELAB CAM16

Note the dark blue distortion in CIELAB and CAM16.

import colorio

colorspace = colorio.cs.JzAzBz
plt = colorio.data.HungBerns().plot(colorspace)
plt.show()
Xiao et al.

Likewise for Xiao et al.:

xyY CIELAB CAM16
import colorio

colorspace = colorio.cs.CIELAB
plt = colorio.data.Xiao().plot(colorspace)
plt.show()

Lightness

Fairchild-Chen
xyY CIELAB CAM16

Lightness experiment by Fairchild-Chen.

import colorio

cs = colorio.cs.CIELAB
plt = colorio.data.FairchildChen("SL2").plot(cs)
plt.show()

Articles

Installation

colorio_foss is NOT is available from the Python Package Index, so you need to clone this repository.

Testing

To run the tests, simply check out this repository and run

tox

Logo

colorio_foss uses the Vortex Abstract Modern logo by arfmdn99, from Freepik.

License

This software is published under the GPLv3 license.

About

Free and Open Source version of 🌈 coloria.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 63.0%
  • TeX 36.9%
  • Just 0.1%