-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex19.out
184 lines (147 loc) · 7.57 KB
/
ex19.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
============================== Prover9 ===============================
Prover9 (64) version 2009-11A, November 2009.
Process 6423 was started by qwang on grid01,
Wed Jun 26 22:33:07 2019
The command was "prover9 -f ex19.in".
============================== end of head ===========================
============================== INPUT =================================
% Reading from file ex19.in
formulas(sos).
(all x (ownsled(x) -> (all y (snowy(y) -> happy(x,y))))).
(all x (white(x) -> snowy(x))).
happy(santa,xmas) -> (all x (child(x) & good(x) -> gettoy(x,xmas))).
(all x (child(x) -> (all y (gettoy(x,y) -> happy(x,y))))).
ownsled(santa).
end_of_list.
formulas(goals).
white(xmas) & (all x (child(x) & -good(x) -> ownsled(x))) -> (all y (child(y) -> happy(y,xmas))).
end_of_list.
============================== end of input ==========================
============================== PROCESS NON-CLAUSAL FORMULAS ==========
% Formulas that are not ordinary clauses:
1 (all x (ownsled(x) -> (all y (snowy(y) -> happy(x,y))))) # label(non_clause). [assumption].
2 (all x (white(x) -> snowy(x))) # label(non_clause). [assumption].
3 happy(santa,xmas) -> (all x (child(x) & good(x) -> gettoy(x,xmas))) # label(non_clause). [assumption].
4 (all x (child(x) -> (all y (gettoy(x,y) -> happy(x,y))))) # label(non_clause). [assumption].
5 white(xmas) & (all x (child(x) & -good(x) -> ownsled(x))) -> (all y (child(y) -> happy(y,xmas))) # label(non_clause) # label(goal). [goal].
============================== end of process non-clausal formulas ===
============================== PROCESS INITIAL CLAUSES ===============
% Clauses before input processing:
formulas(usable).
end_of_list.
formulas(sos).
-ownsled(x) | -snowy(y) | happy(x,y). [clausify(1)].
-white(x) | snowy(x). [clausify(2)].
-happy(santa,x) | -child(y) | -good(y) | gettoy(y,x). [clausify(3)].
-child(x) | -gettoy(x,y) | happy(x,y). [clausify(4)].
ownsled(santa). [assumption].
white(c1). [deny(5)].
-child(x) | good(x) | ownsled(x). [deny(5)].
child(c2). [deny(5)].
-happy(c2,c1). [deny(5)].
end_of_list.
formulas(demodulators).
end_of_list.
============================== PREDICATE ELIMINATION =================
Eliminating ownsled/1
6 ownsled(santa). [assumption].
7 -ownsled(x) | -snowy(y) | happy(x,y). [clausify(1)].
Derived: -snowy(x) | happy(santa,x). [resolve(6,a,7,a)].
8 -child(x) | good(x) | ownsled(x). [deny(5)].
Derived: -child(x) | good(x) | -snowy(y) | happy(x,y). [resolve(8,c,7,a)].
Eliminating white/1
9 white(c1). [deny(5)].
10 -white(x) | snowy(x). [clausify(2)].
Derived: snowy(c1). [resolve(9,a,10,a)].
Eliminating happy/2
11 -child(x) | -gettoy(x,y) | happy(x,y). [clausify(4)].
12 -happy(santa,x) | -child(y) | -good(y) | gettoy(y,x). [clausify(3)].
Derived: -child(santa) | -gettoy(santa,x) | -child(y) | -good(y) | gettoy(y,x). [resolve(11,c,12,a)].
13 -happy(c2,c1). [deny(5)].
Derived: -child(c2) | -gettoy(c2,c1). [resolve(13,a,11,c)].
14 -snowy(x) | happy(santa,x). [resolve(6,a,7,a)].
Derived: -snowy(x) | -child(y) | -good(y) | gettoy(y,x). [resolve(14,b,12,a)].
15 -child(x) | good(x) | -snowy(y) | happy(x,y). [resolve(8,c,7,a)].
Derived: -child(c2) | good(c2) | -snowy(c1). [resolve(15,d,13,a)].
Eliminating snowy/1
16 -snowy(x) | -child(y) | -good(y) | gettoy(y,x). [resolve(14,b,12,a)].
17 snowy(c1). [resolve(9,a,10,a)].
Derived: -child(x) | -good(x) | gettoy(x,c1). [resolve(16,a,17,a)].
18 -child(c2) | good(c2) | -snowy(c1). [resolve(15,d,13,a)].
Derived: -child(c2) | good(c2). [resolve(18,c,17,a)].
Eliminating good/1
19 -child(c2) | good(c2). [resolve(18,c,17,a)].
20 -child(santa) | -gettoy(santa,x) | -child(y) | -good(y) | gettoy(y,x). [resolve(11,c,12,a)].
21 -child(x) | -good(x) | gettoy(x,c1). [resolve(16,a,17,a)].
Derived: -child(c2) | -child(santa) | -gettoy(santa,x) | -child(c2) | gettoy(c2,x). [resolve(19,b,20,d)].
Derived: -child(c2) | -child(c2) | gettoy(c2,c1). [resolve(19,b,21,b)].
============================== end predicate elimination =============
Auto_denials: (no changes).
Term ordering decisions:
Predicate symbol precedence: predicate_order([ child, gettoy ]).
Function symbol precedence: function_order([ santa, c1, c2 ]).
After inverse_order: (no changes).
Unfolding symbols: (none).
Auto_inference settings:
% set(neg_binary_resolution). % (HNE depth_diff=0)
% clear(ordered_res). % (HNE depth_diff=0)
% set(ur_resolution). % (HNE depth_diff=0)
% set(ur_resolution) -> set(pos_ur_resolution).
% set(ur_resolution) -> set(neg_ur_resolution).
Auto_process settings:
% set(unit_deletion). % (Horn set with negative nonunits)
kept: 22 child(c2). [deny(5)].
23 -child(c2) | -gettoy(c2,c1). [resolve(13,a,11,c)].
kept: 24 -gettoy(c2,c1). [copy(23),unit_del(a,22)].
25 -child(c2) | -child(santa) | -gettoy(santa,x) | -child(c2) | gettoy(c2,x). [resolve(19,b,20,d)].
kept: 26 -child(santa) | -gettoy(santa,x) | gettoy(c2,x). [copy(25),merge(d),unit_del(a,22)].
27 -child(c2) | -child(c2) | gettoy(c2,c1). [resolve(19,b,21,b)].
============================== PROOF =================================
% Proof 1 at 0.00 (+ 0.00) seconds.
% Length of proof is 25.
% Level of proof is 6.
% Maximum clause weight is 3.000.
% Given clauses 0.
1 (all x (ownsled(x) -> (all y (snowy(y) -> happy(x,y))))) # label(non_clause). [assumption].
2 (all x (white(x) -> snowy(x))) # label(non_clause). [assumption].
3 happy(santa,xmas) -> (all x (child(x) & good(x) -> gettoy(x,xmas))) # label(non_clause). [assumption].
4 (all x (child(x) -> (all y (gettoy(x,y) -> happy(x,y))))) # label(non_clause). [assumption].
5 white(xmas) & (all x (child(x) & -good(x) -> ownsled(x))) -> (all y (child(y) -> happy(y,xmas))) # label(non_clause) # label(goal). [goal].
6 ownsled(santa). [assumption].
7 -ownsled(x) | -snowy(y) | happy(x,y). [clausify(1)].
8 -child(x) | good(x) | ownsled(x). [deny(5)].
9 white(c1). [deny(5)].
10 -white(x) | snowy(x). [clausify(2)].
11 -child(x) | -gettoy(x,y) | happy(x,y). [clausify(4)].
12 -happy(santa,x) | -child(y) | -good(y) | gettoy(y,x). [clausify(3)].
13 -happy(c2,c1). [deny(5)].
14 -snowy(x) | happy(santa,x). [resolve(6,a,7,a)].
15 -child(x) | good(x) | -snowy(y) | happy(x,y). [resolve(8,c,7,a)].
16 -snowy(x) | -child(y) | -good(y) | gettoy(y,x). [resolve(14,b,12,a)].
17 snowy(c1). [resolve(9,a,10,a)].
18 -child(c2) | good(c2) | -snowy(c1). [resolve(15,d,13,a)].
19 -child(c2) | good(c2). [resolve(18,c,17,a)].
21 -child(x) | -good(x) | gettoy(x,c1). [resolve(16,a,17,a)].
22 child(c2). [deny(5)].
23 -child(c2) | -gettoy(c2,c1). [resolve(13,a,11,c)].
24 -gettoy(c2,c1). [copy(23),unit_del(a,22)].
27 -child(c2) | -child(c2) | gettoy(c2,c1). [resolve(19,b,21,b)].
28 $F. [copy(27),merge(b),unit_del(a,22),unit_del(b,24)].
============================== end of proof ==========================
============================== STATISTICS ============================
Given=0. Generated=4. Kept=3. proofs=1.
Usable=0. Sos=0. Demods=0. Limbo=3, Disabled=20. Hints=0.
Kept_by_rule=0, Deleted_by_rule=0.
Forward_subsumed=0. Back_subsumed=0.
Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.
Demod_attempts=0. Demod_rewrites=0.
Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.
Megabytes=0.05.
User_CPU=0.00, System_CPU=0.00, Wall_clock=0.
============================== end of statistics =====================
============================== end of search =========================
THEOREM PROVED
Exiting with 1 proof.
Process 6423 exit (max_proofs) Wed Jun 26 22:33:07 2019