Skip to content

shenyunhang/WS-JDS

ws-jds
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cyclic Guidance for Weakly Supervised Joint Detection and Segmentation

By Yunhang Shen, Rongrong Ji, Yan Wang, Yongjian Wu, Liujuan Cao.

CVPR 2019 Paper.

This project is based on Detectron.

Introduction

License

WS-JDS is released under the Apache 2.0 license. See the NOTICE file for additional details.

Citing WS-JDS

If you find WS-JDS useful in your research, please consider citing:

@inproceedings{WS-JDS_2019_CVPR,
	author = {Shen, Yunhang and Ji, Rongrong and Wang, Yan and Wu, Yongjian and Cao, Liujuan},
	title = {Cyclic Guidance for Weakly Supervised Joint Detection and Segmentation},
	booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year = {2019},
}   

Installation

Requirements:

  • NVIDIA GPU, Linux, Python2
  • Caffe2 in pytorch v1.0.1, various standard Python packages, and the COCO API; Instructions for installing these dependencies are found below

Caffe2

Clone the pytorch repository:

# pytorch=/path/to/clone/pytorch
git clone https://github.com/pytorch/pytorch.git $pytorch
cd $pytorch
git checkout v1.0.1
git submodule update --init --recursive

Install Python dependencies:

pip install -r $pytorch/requirements.txt

Build caffe2:

cd $pytorch
sudo USE_OPENCV=On USE_LMDB=On BUILD_BINARY=On python2 setup.py install

Other Dependencies

Install the COCO API:

# COCOAPI=/path/to/clone/cocoapi
git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
cd $COCOAPI/PythonAPI
# Install into global site-packages
make install
# Alternatively, if you do not have permissions or prefer
# not to install the COCO API into global site-packages
python setup.py install --user

Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

Install the pycococreator:

pip install git+git://github.com/waspinator/pycococreator.git@0.2.0

WS-JDS

Clone the WS-JDS repository:

# WS-JDS=/path/to/clone/WS-JDS
git clone https://github.com/shenyunhang/WS-JDS.git $WS-JDS
cd $WS-JDS
git submodule update --init --recursive

Install Python dependencies:

pip install -r requirements.txt

Set up Python modules:

make

Build the custom C++ operators library:

mkdir -p build && cd build
cmake .. -DCMAKE_CXX_FLAGS="-isystem $pytorch/third_party/eigen -isystem $/pytorch/third_party/cub"
make

Dataset Preparation

Please follow this to creating symlinks for PASCAL VOC.

Download MCG proposal from here to detectron/datasets/data, and transform it to pickle serialization format:

cd detectron/datasets/data
tar xvzf MCG-Pascal-Main_trainvaltest_2007-boxes.tgz
cd ../../../
python tools/convert_mcg.py voc_2007_train detectron/datasets/data/MCG-Pascal-Main_trainvaltest_2007-boxes detectron/datasets/data/mcg_voc_2007_train.pkl
python tools/convert_mcg.py voc_2007_val detectron/datasets/data/MCG-Pascal-Main_trainvaltest_2007-boxes detectron/datasets/data/mcg_voc_2007_val.pkl
python tools/convert_mcg.py voc_2007_test detectron/datasets/data/MCG-Pascal-Main_trainvaltest_2007-boxes detectron/datasets/data/mcg_voc_2007_test.pkl

Model Preparation

Download VGG16 model (VGG_ILSVRC_16_layers.caffemodel and VGG_ILSVRC_16_layers_deploy.prototxtt) and transform it to pickle serialization format:

cd $WS-JDS
mkdir -p model/
cd model
wget http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
wget https://gist.githubusercontent.com/ksimonyan/211839e770f7b538e2d8/raw/ded9363bd93ec0c770134f4e387d8aaaaa2407ce/VGG_ILSVRC_16_layers_deploy.prototxt
cd ../
./scripts/convert_vgg16.sh

Download DeepLabv2_VGG16 and transform it to pickle serialization format:

cd $WS-JDS
cd model
wget http://liangchiehchen.com/projects/released/deeplab_aspp_vgg16/prototxt_and_model.zip
unzip prototxt_and_model.zip
cd ..
python tools/pickle_caffe_blobs.py --prototxt model/train.prototxt --caffemodel model/init.caffemodel --output model/init.pkl 
python tools/combine_deeplab_and_original_vgg16.py model/VGG_ILSVRC_16_layers_v1.pkl model/init.pkl model/vgg16_init.pkl

Noted that this requires to instal caffe1 separately, as caffe1 specific proto is removed in pytorch v1.0.1. See this.

You can download vgg16_init.pkl from this link.

You may also need to modify the below config files to point TRAINING.WEIGHTS to vgg16_init.pkl.

Quick Start: Using WS-JDS

./scripts/train_wsl.sh --cfg configs/voc_2007/ws-jds_VGG16-C5D_1x.yaml OUTPUT_DIR experiments/ws-jds_vgg16_voc2007_`date +'%Y-%m-%d_%H-%M-%S'`

Result

The final model and log can be downloaded from here.

Noted that the results reported in the paper are based on Caffe2 in pytorch v0.4.1, while this repository is based on v1.0.1.

And upgrade it to v1.2.0 may reduce the performance by ~2% mAP on PASCAL VOC, which is weird.