Skip to content

A PyTorch implementation of MEGABYTE. This multi-scale transformer architecture has the excellent features of tokenization-free and sub-quadratic attention. The paper link: https://arxiv.org/abs/2305.07185

License

Notifications You must be signed in to change notification settings

shjwudp/megabyte

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Megabyte

This repository implements MEGABYTE with pytorch, and tries to explore the best practice of Megabyte architecture. The original architecture described in the paper is implemented in megabyte.py, and the best practices are implemented in megabyte_in_action.py.

Megabyte is a new architecture that overcomes the performance defects of bytes end-to-end training and makes tokenization-free autoregressive sequence modeling possible.

Megabyte in autoregressive training

import torch
import torch.nn.functional as F
from einops import rearrange
from model import MegabyteConfig, Megabyte

V = 512         # vocabulary size, input bytes have 256 characters, and the extra 256 are reserved for special tokens.
P = 4           # patch size
D_G = 512       # global model dimension
D_L = 128       # local model dimension
T = 1024        # sequence length
B = 2           # batch size
K = T//P        # number of patches
PAD_ID = 257    # padding token id
EOS_ID = 258    # end of sequence token id

config = MegabyteConfig(
    V=V,
    P=P,
    D_G=D_G,
    D_L=D_L,
    T_MAX=T,
    initializer_range=0.02, # Parameter initialization value range
    g_nlayers=4,            # number of global model layers
    g_nheads=32,            # number of global model attention heads
    l_nlayers=2,            # number of local model attention layers
    l_nheads=2,             # number of local model attention heads
    pad_id=PAD_ID,
    eos_id=EOS_ID,
)
megabyte = Megabyte(config)
input_ids = torch.randint(0, 255, (B, T))
# Autoregressive learning, megabyte will learn from the inputs input[:, :-1], labels input[:, :], and learn to predict the next token.
loss = megabyte(input_ids, return_loss=True).loss
loss.backward()

print(loss.norm())

Megabyte in generation

...
from model.megabyte_transformers import MegabyteLMHeadModel, MegabyteTokenizer
lm_head_megabyte = MegabyteLMHeadModel.from_native_megabyte(megabyte)
tokenizer = MegabyteTokenizer(
    eos_token_id=lm_head_megabyte.config.eos_token_id,
)

inputs = tokenizer("Today is", return_tensors="pt")
outputs = lm_head_megabyte.generate(
    **inputs,
    max_new_tokens=5,
    return_dict_in_generate=True,
    output_scores=True,
)

texts = tokenizer.decode(outputs.sequences)
print(texts)

Benchmark

You can use the benchmark.py script for Megabyte's performance measurement. The following table compares the training of Megabyte and GPT2 on wikitext-103-v1 with the same parameter scale.

model # of parameters (M) training speed (KB/s) GPU Memory Allocated % eval loss ↓ eval loss bpc ↓
gpt2 119 143.68 42.97 5.06 1.10
megabyte(P=8) 126 189.13 17.62 1.13 1.13
megabyte_in_action(P=8) 126 197.47 18.69 1.09 1.09

Citation

@misc{yu2023megabyte,
      title={MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers}, 
      author={Lili Yu and Dániel Simig and Colin Flaherty and Armen Aghajanyan and Luke Zettlemoyer and Mike Lewis},
      year={2023},
      eprint={2305.07185},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

About

A PyTorch implementation of MEGABYTE. This multi-scale transformer architecture has the excellent features of tokenization-free and sub-quadratic attention. The paper link: https://arxiv.org/abs/2305.07185

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages