This repository implements MEGABYTE with pytorch, and tries to explore the best practice of Megabyte architecture. The original architecture described in the paper is implemented in megabyte.py, and the best practices are implemented in megabyte_in_action.py.
Megabyte is a new architecture that overcomes the performance defects of bytes end-to-end training and makes tokenization-free autoregressive sequence modeling possible.
import torch
import torch.nn.functional as F
from einops import rearrange
from model import MegabyteConfig, Megabyte
V = 512 # vocabulary size, input bytes have 256 characters, and the extra 256 are reserved for special tokens.
P = 4 # patch size
D_G = 512 # global model dimension
D_L = 128 # local model dimension
T = 1024 # sequence length
B = 2 # batch size
K = T//P # number of patches
PAD_ID = 257 # padding token id
EOS_ID = 258 # end of sequence token id
config = MegabyteConfig(
V=V,
P=P,
D_G=D_G,
D_L=D_L,
T_MAX=T,
initializer_range=0.02, # Parameter initialization value range
g_nlayers=4, # number of global model layers
g_nheads=32, # number of global model attention heads
l_nlayers=2, # number of local model attention layers
l_nheads=2, # number of local model attention heads
pad_id=PAD_ID,
eos_id=EOS_ID,
)
megabyte = Megabyte(config)
input_ids = torch.randint(0, 255, (B, T))
# Autoregressive learning, megabyte will learn from the inputs input[:, :-1], labels input[:, :], and learn to predict the next token.
loss = megabyte(input_ids, return_loss=True).loss
loss.backward()
print(loss.norm())
...
from model.megabyte_transformers import MegabyteLMHeadModel, MegabyteTokenizer
lm_head_megabyte = MegabyteLMHeadModel.from_native_megabyte(megabyte)
tokenizer = MegabyteTokenizer(
eos_token_id=lm_head_megabyte.config.eos_token_id,
)
inputs = tokenizer("Today is", return_tensors="pt")
outputs = lm_head_megabyte.generate(
**inputs,
max_new_tokens=5,
return_dict_in_generate=True,
output_scores=True,
)
texts = tokenizer.decode(outputs.sequences)
print(texts)
You can use the benchmark.py script for Megabyte's performance measurement. The following table compares the training of Megabyte and GPT2 on wikitext-103-v1 with the same parameter scale.
model | # of parameters (M) | training speed (KB/s) | GPU Memory Allocated % | eval loss ↓ | eval loss bpc ↓ |
---|---|---|---|---|---|
gpt2 | 119 | 143.68 | 42.97 | 5.06 | 1.10 |
megabyte(P=8) | 126 | 189.13 | 17.62 | 1.13 | 1.13 |
megabyte_in_action(P=8) | 126 | 197.47 | 18.69 | 1.09 | 1.09 |
@misc{yu2023megabyte,
title={MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers},
author={Lili Yu and Dániel Simig and Colin Flaherty and Armen Aghajanyan and Luke Zettlemoyer and Mike Lewis},
year={2023},
eprint={2305.07185},
archivePrefix={arXiv},
primaryClass={cs.LG}
}