Skip to content

Commit e96a70b

Browse files
committed
all_tasks_completed
1 parent 6cc7026 commit e96a70b

File tree

5 files changed

+135
-0
lines changed

5 files changed

+135
-0
lines changed
Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
import seaborn as sns
2+
import matplotlib.pyplot as plt
3+
4+
# 1. Load the DataSet:
5+
iris_df = sns.load_dataset('iris')
6+
7+
# 2. Exploratory Data Analysis (EDA):
8+
print("Dataset information:")
9+
print(iris_df.info())
10+
11+
print("\nSummary statistics:")
12+
print(iris_df.describe())
13+
14+
print("\nFirst few rows of the dataset:")
15+
print(iris_df.head())
16+
17+
# 3. Data Cleaning:
18+
print("\nChecking for missing values:")
19+
print(iris_df.isnull().sum())
20+
21+
print("\nChecking for duplicate rows:")
22+
print(iris_df.duplicated().sum())
23+
24+
# 4. Aggregation:
25+
species_mean = iris_df.groupby('species').mean()
26+
27+
# 5. Visualizations:
28+
# Pairplot
29+
sns.pairplot(iris_df, hue='species')
30+
plt.suptitle('Pairplot of Iris Dataset', y=1.02)
31+
plt.show()
32+
33+
# Correlation Heatmap
34+
plt.figure(figsize=(8, 6))
35+
sns.heatmap(iris_df.corr(), annot=True, cmap='coolwarm')
36+
plt.title('Correlation Matrix')
37+
plt.show()
38+
39+
# 6. Correlation Calculations:
40+
correlation_matrix = iris_df.corr()
Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
from sklearn.datasets import load_diabetes
2+
from sklearn.model_selection import train_test_split
3+
from sklearn.linear_model import LinearRegression
4+
import matplotlib.pyplot as plt
5+
import numpy as np
6+
7+
# Load the dataset
8+
diabetes = load_diabetes()
9+
10+
# Prepare the data
11+
X = diabetes.data
12+
y = diabetes.target
13+
14+
# Split the data into training and testing sets
15+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
16+
17+
# Train the model
18+
model = LinearRegression()
19+
model.fit(X_train, y_train)
20+
21+
# Evaluate the model
22+
train_score = model.score(X_train, y_train)
23+
test_score = model.score(X_test, y_test)
24+
print(f'Training Score: {train_score:.2f}')
25+
print(f'Testing Score: {test_score:.2f}')
26+
27+
# Plot residuals
28+
train_residuals = y_train - model.predict(X_train)
29+
test_residuals = y_test - model.predict(X_test)
30+
31+
plt.figure(figsize=(12, 6))
32+
33+
plt.subplot(1, 2, 1)
34+
plt.scatter(model.predict(X_train), train_residuals, alpha=0.5, label='Train Residuals')
35+
plt.axhline(y=0, color='r', linestyle='--')
36+
plt.title('Residual Plot (Training)')
37+
plt.xlabel('Predicted Values')
38+
plt.ylabel('Residuals')
39+
plt.legend()
40+
41+
plt.subplot(1, 2, 2)
42+
plt.scatter(model.predict(X_test), test_residuals, alpha=0.5, label='Test Residuals')
43+
plt.axhline(y=0, color='r', linestyle='--')
44+
plt.title('Residual Plot (Testing)')
45+
plt.xlabel('Predicted Values')
46+
plt.ylabel('Residuals')
47+
plt.legend()
48+
49+
plt.tight_layout()
50+
plt.show()
175 KB
Loading
Lines changed: 45 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,45 @@
1+
from PIL import Image
2+
import os
3+
4+
def compress_image(input_path, output_path, quality=60):
5+
try:
6+
input_image = Image.open(input_path)
7+
8+
if input_image.mode == 'RGBA':
9+
input_image = input_image.convert('RGB')
10+
11+
# Determine output format based on file extension
12+
output_format = os.path.splitext(output_path)[1][1:].upper() # Get file extension and convert to uppercase
13+
if output_format not in ['JPEG', 'JPG', 'PNG']:
14+
raise ValueError("Unsupported output format. Supported formats: JPEG, JPG, PNG")
15+
16+
# Save the compressed image
17+
compressed_image = input_image.copy()
18+
compressed_image.save(output_path, format=output_format, quality=quality)
19+
20+
print(f"Compressed image saved at: {output_path}")
21+
22+
except FileNotFoundError:
23+
print(f"Error: The file '{input_path}' was not found.")
24+
except Exception as e:
25+
print(f"Error: {e}")
26+
27+
def main():
28+
input_path = r'D:\Python-Programming-Internship\Chauhan_Shyam_R\Task_12\be_better.png' # Adjust this path
29+
output_folder = 'compressed_images'
30+
os.makedirs(output_folder, exist_ok=True)
31+
32+
# Interactive quality adjustment
33+
try:
34+
quality = int(input("Enter compression quality (0 - 95): "))
35+
if quality < 0 or quality > 95:
36+
raise ValueError("Compression quality must be between 0 and 95.")
37+
except ValueError:
38+
quality = 60 # Default value if invalid input
39+
40+
# Compress image
41+
output_path = os.path.join(output_folder, 'compressed_image.png')
42+
compress_image(input_path, output_path, quality)
43+
44+
if __name__ == "__main__":
45+
main()
175 KB
Loading

0 commit comments

Comments
 (0)