Skip to content
/ PILAE Public

Pseduo-Inverse Learning algorithm for training Auto-encoders

Notifications You must be signed in to change notification settings

fengsibo/PILAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 

Repository files navigation

PILAE

Pseudo-inverse Learning algorithm for training Auto-encoders

Dataset Downloads

链接: https://pan.baidu.com/s/1b5XHm2NjrLDQlvZaLWP9rw 密码: zrfr

下载后放在工程根目录

How to use?

具体可以参考测试文件test.py 里面有使用方法

from src.pilae import PILAE
import src.tools as tools

(X_train, y_train), (X_test, y_test) = tools.load_npz(DATASET_PATH)
X_train = X_train.reshape(-1, DIMESION_OF_DATASET).astype('float64') / 255.
X_test = X_test.reshape(-1, DIMESION_OF_DATASET).astype('float64') / 255.

# 创建对象时注意 num_*_layers和len(list)和len(pil*_p)对应(层数和list长度对应)
pilae = PILAE(pilae_p=[500, 480, 460],
              pil_p=[300],
              ae_k_list=[0.7, 0.1, 0.1],
              pil_k=0.0,
              acFunc='sig')

pilae.train_pilae(X_train, y_train)

param:

ae_k_list:list类型参数 list的引索的值是对应某层的k(k为正则化系数)的值

pilae_p:list类型参数 list的引索的值对应pilae某层的p(p为隐层单元个数)的值

pil_p:list类型参数 list的引索的值对应mlp分类器某层的p(p为隐层单元个数)的值

pil_k:float类型参数 代表mlp的正则化系数

alpha:经验公式给出的参数(这个版本代码没有用到,保留)

acFunc:激活函数 'sig', 'sin', 'srelu', 'tanh', 'swish', 'relu' 可选

说明

传参时确定好pilae_p和pil_p两个list, 手动设置隐层节点数

同时ae正则化参数k_list要和pilae_p长度相同

层数由传入的list的长度决定

具体参数描述请参考论文 SMC 2017 K. Wang et al.

[注] :

About

Pseduo-Inverse Learning algorithm for training Auto-encoders

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages