This case requires to develop a customer segmentation to give recommendations like saving plans, loans, wealth management, etc. on target customer groups.
The sample Dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables.
Use the below link to download the Data Set:here
In this dataset i've used five clustering algorithm to perform segmentation.These algorithms are given below.
- K-Means Clustering
- Agglomerative Clustering
- Spectral Clustering
- DBSCAN Clustering
- GaussianMixture Model based clustering
- Python 3.x
- scikit-learn
- scipy
- pandas
- numpy
- matplotlib
- seaborn
- jupyter notebook
If using pip ->
- Pandas: -
pip install pandas
- numpy: -
pip install numpy
- scipy: -
pip install scipy
- scikit-learn: -
pip install scikit-learn
- matplotlib: -
pip install matplotlib
- seaborn: -
pip install seaborn
- jupyter notebook: -
pip install jupyter
If using anaconda ->
- Pandas: -
pip install pandas
- numpy: -
pip install numpy
- scipy: -
pip install scipy
- scikit-learn: -
pip install scikit-learn
- matplotlib: -
pip install matplotlib
- seaborn: -
pip install seaborn
- jupyter notebook: -
pip install jupyter
Any issues??? Feel free to ask.Linkedin
If you find this repo useful,don't forget to give a ⭐
Thanks! ❤️