Copyright © 2018,2019 Keith Packard
PicoLibc is library offering standard C library APIs that targets small embedded systems with limited RAM. PicoLibc was formed by blending code from Newlib and AVR Libc.
Most of these options set configuration values for the newlib code base and should match that configuration system. Use -D={true,false} to change from the default value.
Option | Default | Description |
---|---|---|
target-optspace | false | Compile with -Os |
hw-fp | false | Turn on hardware floating point math |
tests | false | Enable tests |
newlib-tinystdio | false | Use tiny stdio from avr libc |
newlib-io-pos-args | false | Enable printf-family positional arg support |
newlib-io-c99-formats | false | Enable C99 support in IO functions like printf/scanf |
newlib-register-fini | false | Enable finalization function registration using atexit |
newlib-io-long-long | false | Enable long long type support in IO functions like printf/scanf |
newlib-io-long-double | false | Enable long double type support in IO functions printf/scanf |
newlib-mb | false | Enable multibyte support |
newlib-iconv-encodings | false | Enable specific comma-separated list of bidirectional iconv encodings to be built-in |
newlib-iconv-from-encodings | false | Enable specific comma-separated list of "from" iconv encodings to be built-in |
newlib-iconv-to-encodings | false | Enable specific comma-separated list of "to" iconv encodings to be built-in |
newlib-iconv-external-ccs | false | Enable capabilities to load external CCS files for iconv |
newlib-atexit-dynamic-alloc | false | Enable dynamic allocation of atexit entries |
newlib-global-atexit | false | Enable atexit data structure as global |
newlib-reent-small | false | Enable small reentrant struct support |
newlib-global-stdio-streams | false | Enable global stdio streams |
newlib-fvwrite-in-streamio | false | Disable iov in streamio |
newlib-fseek-optimization | false | Disable fseek optimization |
newlib_wide_orient | false | Turn off wide orientation in streamio |
newlib-nano-malloc | false | Use small-footprint nano-malloc implementation |
newlib-unbuf-stream-opt | false | Enable unbuffered stream optimization in streamio |
lite-exit | false | Enable light weight exit |
newlib_nano_formatted_io | false | Use nano version formatted IO |
newlib-retargetable-locking | false | Allow locking routines to be retargeted at link time |
newlib-long-time_t | false | Define time_t to long |
newlib-multithread | false | Enable support for multiple threads |
newlib-iconv | false | Enable iconv library support |
newlib-io-float | false | Enable printf/scanf family float support |
newlib-supplied-syscalls | false | Enable newlib supplied syscalls |
Meson sticks all of the cross-compilation build configuration bits in a separate configuration file. There are a bunch of things you need to set, which the build system really shouldn't care about. Example configuration settings for RISC-V processors are in cross-riscv32-unknown-elf.txt:
[binaries]
c = 'riscv32-unknown-elf-gcc'
ar = 'riscv32-unknown-elf-ar'
as = 'riscv32-unknown-elf-as'
[host_machine]
system = ''
cpu_family = ''
cpu = ''
endian = ''
Settings for ARM processors are in cross-arm-none-eabi.txt:
[binaries]
c = 'arm-none-eabi-gcc'
ar = 'arm-none-eabi-ar'
as = 'arm-none-eabi-as'
[host_machine]
system = ''
cpu_family = ''
cpu = ''
endian = ''
If those programs aren't in your path, you can edit the file to point wherever they may be.
The PicoLibc configuration detects the processor configurations
supported by the compiler using the --print-multi-lib
command-line option:
$ riscv32-unknown-elf-gcc --print-multi-lib
.;
rv32i/ilp32;@march=rv32i@mabi=ilp32
rv32im/ilp32;@march=rv32im@mabi=ilp32
rv32iac/ilp32;@march=rv32iac@mabi=ilp32
rv32imac/ilp32;@march=rv32imac@mabi=ilp32
rv32imafc/ilp32f;@march=rv32imafc@mabi=ilp32f
rv64imac/lp64;@march=rv64imac@mabi=lp64
rv64imafdc/lp64d;@march=rv64imafdc@mabi=lp64d
$ arm-none-eabi-gcc --print-multi-lib
.;
thumb;@mthumb
hard;@mfloat-abi=hard
thumb/v6-m;@mthumb@march=armv6s-m
thumb/v7-m;@mthumb@march=armv7-m
thumb/v7e-m;@mthumb@march=armv7e-m
thumb/v7-ar;@mthumb@march=armv7
thumb/v8-m.base;@mthumb@march=armv8-m.base
thumb/v8-m.main;@mthumb@march=armv8-m.main
thumb/v7e-m/fpv4-sp/softfp;@mthumb@march=armv7e-m@mfpu=fpv4-sp-d16@mfloat-abi=softfp
thumb/v7e-m/fpv4-sp/hard;@mthumb@march=armv7e-m@mfpu=fpv4-sp-d16@mfloat-abi=hard
thumb/v7e-m/fpv5/softfp;@mthumb@march=armv7e-m@mfpu=fpv5-d16@mfloat-abi=softfp
thumb/v7e-m/fpv5/hard;@mthumb@march=armv7e-m@mfpu=fpv5-d16@mfloat-abi=hard
thumb/v7-ar/fpv3/softfp;@mthumb@march=armv7@mfpu=vfpv3-d16@mfloat-abi=softfp
thumb/v7-ar/fpv3/hard;@mthumb@march=armv7@mfpu=vfpv3-d16@mfloat-abi=hard
thumb/v7-ar/fpv3/hard/be;@mthumb@march=armv7@mfpu=vfpv3-d16@mfloat-abi=hard@mbig-endian
thumb/v8-m.main/fpv5-sp/softfp;@mthumb@march=armv8-m.main@mfpu=fpv5-sp-d16@mfloat-abi=softfp
thumb/v8-m.main/fpv5-sp/hard;@mthumb@march=armv8-m.main@mfpu=fpv5-sp-d16@mfloat-abi=hard
thumb/v8-m.main/fpv5/softfp;@mthumb@march=armv8-m.main@mfpu=fpv5-d16@mfloat-abi=softfp
thumb/v8-m.main/fpv5/hard;@mthumb@march=armv8-m.main@mfpu=fpv5-d16@mfloat-abi=hard
On RISC-V, PicoLibc is compiled 8 times, while on ARM, the library is compiled 20 times with the specified compiler options (replace the '@'s with '-' to see what they will be).
Because I'm targeting smaller systems like the STM32F042 Cortex-M0 parts with 4kB of RAM and 32kB of flash, I enable all of the 'make it smaller' options. This example is in the do-arm-configure file:
#!/bin/sh
ARCH=arm-none-eabi
DIR=`dirname $0`
meson $DIR \
-Dtarget-optspace=true \
-Dnewlib-tinystdio=true \
-Dnewlib-supplied-syscalls=false \
-Dnewlib-reentrant-small=true\
-Dnewlib-wide-orient=false\
-Dnewlib-nano-malloc=true\
-Dlite-exit=true\
-Dnewlib-global-atexit=true\
-Dincludedir=lib/newlib-nano/$ARCH/include \
-Dlibdir=lib/newlib-nano/$ARCH/lib \
--cross-file $DIR/cross-$ARCH.txt \
--buildtype plain
Note the use of '--buildtype plain'. This stops meson from adding compilation options so that the '-Dtarget-optspace=true' option can select '-Os'.
This script is designed to be run from a build directory, so you'd do:
$ mkdir build-arm-none-eabi
$ cd build-arm-none-eabi
$ ../do-arm-configure
Once configured, you can compile the libraries with
$ ninja
...
$ ninja install
...
$
We should configure the compiler so that selecting a suitable target architecture combination would set up the library paths to match, but at this point you'll have to figure out the right -L line by yourself by matching the path name on the left side of the --print-multi-lib output with the compiler options on the right side. For instance, my STM32F042 cortex-M0 parts use
$ arm-none-eabi-gcc -mlittle-endian -mcpu=cortex-m0 -mthumb
To gcc, '-mcpu=cortex=m0' is the same as '-march=armv6s-m', so looking at the output above, the libraries we want are in
/usr/local/lib/newlib-nano/arm-none-eabi/lib/thumb/v6-m
so, to link, we need to use:
$ arm-none-eabi-gcc ... -L/usr/local/lib/newlib-nano/arm-none-eabi/lib/thumb/v6-m -lm -lc -lgcc
If you want to compile the library for your local processor to test changes in the library, the meson configuration is happy to do that for you. You won't need a meson cross compilation configuration file, so all you need is the right compile options. They're mostly the same as the embedded version, but you don't want the multi-architecture stuff and I prefer plain debug to an -Os, as that makes debugging the library easier.
The do-native-configure script has an example:
#!/bin/sh
DIR=`dirname $0`
meson $DIR \
-Dmultilib=false \
-Dnewlib-tinystdio=true \
-Dnewlib-supplied-syscalls=false \
-Dnewlib-wide-orient=false\
-Dnewlib-nano-malloc=true\
-Dlite-exit=true\
-Dnewlib-global-atexit=true\
-Dincludedir=lib/newlib-nano/include \
-Dlibdir=lib/newlib-nano/lib \
-Dtests=true \
--buildtype debug
Again, create a directory and build there:
$ mkdir build-native
$ cd build-native
$ ../do-native-configure
$ ninja
This will also build a test case for printf and scanf in the 'test' directory, which I used to fix up the floating point input and output code.