Skip to content
forked from seohuibae/gat

PyTorch implementation of the paper "Graph Attention Networks". (ICLR 2018)

Notifications You must be signed in to change notification settings

siihwanpark/GAT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GAT (Graph Attention Networks)

PyTorch implementation of the paper "Graph Attention Networks" (ICLR 2018)

Requirements

  • Python 3.6 >
  • PyTorch 1.4 >

Results

  • GCN : hidden node 64, GAT : hidden node 8, num head 8
  • Accuracy on Cora (mean/high/low) : 0.8055/0.8170/0.7930 (GAT), 0.7659/0.7730/0.7530 (GCN)
  • Accuracy on Citeseer (mean/high/low) : 0.6333/0.6490/0.6130 (GAT), 0.6161/0.6220/0.6080 (GCN)

Accuracy Curves

Loss Curves

References

[1] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

[2] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

About

PyTorch implementation of the paper "Graph Attention Networks". (ICLR 2018)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%