Skip to content

An AI program that plays Flappy Bird using reinforcement learning.

License

Notifications You must be signed in to change notification settings

sinarazi/FlapAI-Bird

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FlapAI-Bird

This AI program implements several AI agents for playing Flappy Bird. The program applies reinforcement learning algorithms, including SARSA, Q-Learning, and Function Approximation, and Deep Q Networks. After training for 10,000 iterations, the agents regularly achieves high scores of 1400+, with the highest in-game score of 2069. [Paper] [Poster]

Installation

The project requires the following frameworks:

Train an Agent

The program implements the following agents.

  • Baseline Agent.
python main.py --algo Baseline --probFlap 0.5
  • SARSA Agent.
python main.py --algo SARSA --probFlap 0.1 --rounding 10 --lr 0.8
  • Q-Learning Agent.
python main.py --algo QLearning --probFlap 0.1 --rounding 10 --lr 0.8 --order backward
  • Function Approximation Agent with Linear Regression.
python main.py --algo FuncApproxLR --probFlap 0.1 --lr 0.1
  • Function Approximation Agent with a Feed Forward Neural Network.
python main.py --algo FuncApproxDNN --probFlap 0.1 --lr 0.1
  • Function Approximation Agent with Convolutional Neural Network.
python main.py --algo FuncApproxCNN --probFlap 0.1 --lr 0.1

Authors

  • Tai Vu - Stanford University

  • Leon Tran - Stanford University

About

An AI program that plays Flappy Bird using reinforcement learning.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%