LIBMF++ is a library for large-scale sparse matrix factorization. For the optimization problem it solves, please refer to [1]. This library is based on LIBMF.
- Installation
- Data Format
- Command Line Usage
- Examples
- References
-
Unix & Cygwin
Type
make' to build
mf-train' and `mf-precict.'
The data format is:
<row_idx> <col_idx> <value>
Note: If the values in the test set are unknown, please write dummy zeros.
-
`mf-train'
usage: mf-train [options] training_set_file [model_file]
options: -l : set regularization parameter (default 0.1) -k : set number of latent features (default 8) -t : set number of iterations (default 20) -s : set number of threads (default 12) -r : set rho parameter(default 0.1) -e : set epsilon parameter(default 0.001) -p : set path to the validation set -v : set number of folds for cross validation --quiet: quiet mode (no outputs)
In the training process, the following information is printed on the screen:
- iter: the index of iteration - time: time cost of iteration - tr_rmse: RMSE in the training set - va_rmse: RMSE in the validation set if `-p' is specified - obj: objective function value
Here
tr_rmse' and
obj' are estimation because calculating true values can be time-consuming. In the end of training process the true tr_rmse is printed. -
`mf-predict'
usage: mf-predict test_file model_file output_file
mf-train bigdata.tr.txt model
train a model using the default parameters
mf-train -l 0.5 -k 16 -t 30 -r 0.05 -e 0.00001 -s 4 bigdata.tr.txt model
train a model using the following parameters:
regularization cost = 0.5
latent factors = 16
iterations = 30
rho = 0.05
epsilon = 0.00001
threads = 4
mf-train -p bigdata.te.txt bigdata.tr.txt model
use bigdata.te.txt as validation set
mf-train -v 5 bigdata.tr.txt
do five fold cross validation
mf-train --quiet bigdata.tr.txt
do not print message to screen
mf-predict bigdata.te.txt model output
do prediction
[1] Wei F, Guo H, Cheng S, et al. AALRSMF: An Adaptive Learning Rate Schedule for Matrix Factorization[C]//Asia-Pacific Web Conference. Springer International Publishing, 2016: 410-413.