forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
25 changed files
with
0 additions
and
23,222 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,263 +0,0 @@ | ||
#include <locale.h> | ||
#include "ggml.h" | ||
#include "build-info.h" | ||
#include <assert.h> | ||
#include <math.h> | ||
#include <cstring> | ||
#include <cstdio> | ||
#include <cinttypes> | ||
#include <unordered_map> | ||
#include <queue> | ||
#include <string.h> | ||
#include <cassert> | ||
#include <fstream> | ||
#include <string> | ||
#include <iterator> | ||
#include <algorithm> | ||
|
||
float tensor_sum_elements(struct ggml_tensor * tensor) { | ||
float sum = 0; | ||
if (tensor->type==GGML_TYPE_F32) { | ||
for (int j = 0; j < tensor->ne[1]; j++) { | ||
for (int k = 0; k < tensor->ne[0]; k++) { | ||
sum += ((float *) tensor->data)[j*tensor->ne[0]+k]; | ||
} | ||
} | ||
} | ||
return sum; | ||
} | ||
|
||
|
||
/* | ||
These are mapping to unknown | ||
GGML_TYPE_I8, | ||
GGML_TYPE_I16, | ||
GGML_TYPE_I32, | ||
GGML_TYPE_COUNT, | ||
*/ | ||
|
||
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN" | ||
|
||
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \ | ||
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\ | ||
(int) TENSOR->ne[0], (int) TENSOR->ne[1], (int) TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \ | ||
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); } | ||
|
||
struct benchmark_params_struct { | ||
int32_t n_threads = 1; | ||
int32_t n_iterations = 10; | ||
}; | ||
|
||
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) { | ||
fprintf(stderr, "usage: %s [options]\n", argv[0]); | ||
fprintf(stderr, "\n"); | ||
fprintf(stderr, "options:\n"); | ||
fprintf(stderr, " -h, --help show this help message and exit\n"); | ||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); | ||
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations); | ||
fprintf(stderr, "\n"); | ||
} | ||
|
||
int main(int argc, char ** argv) { | ||
|
||
|
||
struct benchmark_params_struct benchmark_params; | ||
|
||
bool invalid_param = false; | ||
std::string arg; | ||
for (int i = 1; i < argc; i++) { | ||
arg = argv[i]; | ||
|
||
if (arg == "-t" || arg == "--threads") { | ||
if (++i >= argc) { | ||
invalid_param = true; | ||
break; | ||
} | ||
benchmark_params.n_threads = std::stoi(argv[i]); | ||
} else if (arg == "-i" || arg == "--iter") { | ||
if (++i >= argc) { | ||
invalid_param = true; | ||
break; | ||
} | ||
benchmark_params.n_iterations = std::stoi(argv[i]); | ||
} else if (arg == "-h" || arg == "--help") { | ||
print_usage(argc, argv, benchmark_params); | ||
exit(0); | ||
} | ||
if (invalid_param) { | ||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | ||
print_usage(argc, argv, benchmark_params); | ||
exit(1); | ||
} | ||
} | ||
|
||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); | ||
printf("Starting Test\n"); | ||
|
||
// create the ggml context | ||
struct ggml_context * ctx; | ||
//const int sizex = 4096; | ||
//const int sizey = 11008; | ||
|
||
#undef VERBOSE_DEBUGGING | ||
#ifndef VERBOSE_DEBUGGING | ||
const int sizey = 4096; | ||
const int sizex = 11008; | ||
const int sizez = 128; | ||
#else | ||
/* Working - let's increase size */ | ||
const int sizey = 1; | ||
const int sizex = (8*32); | ||
const int sizez = 1; | ||
|
||
/*const int sizey = 1; | ||
const int sizex = 3*(8*32); | ||
const int sizez = 1;*/ | ||
#endif | ||
|
||
//printf("Memsize required = %i\n", sizex*sizex); | ||
|
||
size_t ctx_size = 0; | ||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); | ||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); | ||
ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32); | ||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); | ||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0); | ||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS | ||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS | ||
ctx_size += 1024*1024*16; | ||
|
||
printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024)); | ||
|
||
struct ggml_init_params params = { | ||
/*.mem_size =*/ ctx_size, | ||
/*.mem_buffer =*/ NULL, | ||
/* no_alloc =*/ 0 | ||
}; | ||
|
||
ctx = ggml_init(params); | ||
if (!ctx) { | ||
fprintf(stderr, "%s: ggml_init() failed\n", __func__); | ||
return 1; | ||
} | ||
|
||
|
||
printf("Creating new tensors\n"); | ||
// printf("Creating new tensor m1\n"); | ||
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); | ||
ggml_set_f32(m11, 1.0f); | ||
|
||
// printf("Creating new tensor m1\n"); | ||
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey); | ||
ggml_set_f32(m12, 1.5f); | ||
|
||
// printf("Creating new tensor m2\n"); | ||
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez); | ||
ggml_set_f32(m2, 2.0f); | ||
|
||
printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n"); | ||
// printf("Creating new tensor m11xm2\n"); | ||
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2); | ||
|
||
// printf("Creating compute graph\n"); | ||
struct ggml_cgraph gf = ggml_build_forward(m11xm2); | ||
|
||
gf.n_threads=benchmark_params.n_threads; | ||
printf("cgraph->n_threads=%i\n",gf.n_threads); | ||
|
||
TENSOR_DUMP(m11); | ||
TENSOR_DUMP(m2); | ||
|
||
ggml_graph_compute(ctx, &gf); | ||
|
||
TENSOR_DUMP(gf.nodes[0]); | ||
|
||
printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n"); | ||
|
||
int32_t nelements = sizex*sizey; | ||
int32_t ne[2] = { sizex, sizey }; | ||
|
||
std::vector<int64_t> hist_cur(1 << 4, 0); | ||
|
||
// Set up a the benchmark matrices | ||
// printf("Creating new tensor q11 & Running quantize\n"); | ||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); | ||
ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data()); | ||
|
||
// Set up a the compute graph | ||
// printf("Creating new tensor q31\n"); | ||
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2); | ||
|
||
// printf("Creating compute graph\n"); | ||
struct ggml_cgraph gf31 = ggml_build_forward(q31); | ||
gf31.n_threads=benchmark_params.n_threads; | ||
|
||
// Set up a second graph computation to make sure we override the CPU cache lines | ||
// printf("Creating new tensor q12 & Running quantize\n"); | ||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey); | ||
ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data()); | ||
|
||
// printf("Creating new tensor q32\n"); | ||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); | ||
|
||
//printf("Creating compute graph\n"); | ||
struct ggml_cgraph gf32 = ggml_build_forward(q32); | ||
gf32.n_threads=benchmark_params.n_threads; | ||
printf("cgraph->n_threads=%i\n",gf31.n_threads); | ||
|
||
const int dimx = sizex; | ||
const int dimy = sizey; | ||
const int dimz = sizez; | ||
long long int flops_per_dot_product = dimy + dimy; | ||
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ; | ||
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000); | ||
|
||
|
||
// Let's use the F32 result from above as a reference for the q4_0 multiplication | ||
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]); | ||
|
||
|
||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n"); | ||
printf("==============================================================================================\n"); | ||
|
||
for (int i=0;i<benchmark_params.n_iterations ;i++) { | ||
|
||
long long int start = ggml_time_us(); | ||
//printf("Running ggml_graph_compute\n"); | ||
ggml_graph_compute(ctx, &gf31); | ||
long long int stop = ggml_time_us(); | ||
long long int usec = stop-start; | ||
float flops_per_usec = (1.0f*flops_per_matrix)/usec; | ||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n", | ||
i, | ||
gf31.n_threads, | ||
sizex, sizey, sizez, flops_per_matrix, | ||
usec,flops_per_usec); | ||
|
||
#ifdef VERBOSE_DEBUGGING | ||
TENSOR_DUMP("res",gf31.nodes[0]) | ||
#endif | ||
|
||
// Check that the matrix multiplication result is in the right ballpark | ||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different | ||
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]); | ||
float delta = abs(sum_of_Q4_result - sum_of_F32_reference); | ||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6 | ||
|
||
if (delta > allowed_delta) { | ||
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n", | ||
sum_of_F32_reference, | ||
sum_of_Q4_result, | ||
delta, | ||
allowed_delta | ||
); | ||
exit(0); | ||
} | ||
|
||
// Running a different graph computation to make sure we override the CPU cache lines | ||
ggml_graph_compute(ctx, &gf32); | ||
|
||
} | ||
|
||
} | ||
|
||
Oops, something went wrong.