Video data can appear in different forms: bunch of files, a video file, a network stream etc. We provide an abstraction for ordered image sources that serve as an isolation from a specific source type.
The interface is simple:
import imagesource
images = imagesource.VideoSource('tests/data/MOV02522.MPG')
img100 = images.get_image(100)
img101 = images.get_next_image()
images.rewind()
img000 = images.get_next_image()
images.write_images('out/%03d.png', 100)
images2 = imagesource.FilesSource('tests/data/frames/%03d.jpg')
# same interface as above ...
The basic sources are VideoSource
and FilesSource
for video files and sequences of image files respectively. The TimedVideoSource
extracts frame timestamps from video files. The SynchronizedSource
translates frame numbers using a table. This can be used for creating a synchronized set of sources.
For more examples see tests/test.py
Install OpenCV 3.x with Python bindings and Numpy using a system package manager.
$ pip install imagesource
The TimedVideoSource
requires ffprobe
command from the ffmpeg
suite.
$ pip install nose
$ nosetests
It is simple to write transparent image source wrappers that post-process image data from an underlying image source (e.g. background subtraction, radial distortion removal, ...).
An example background subtracted image source:
class BackgroundSubtractedSource(imagesource.ImageSource):
def __init__(self, source):
self.source = source
self.bgs = cv2.createBackgroundSubtractorMOG2(...)
def get_image(self, frame):
img = self.source.get_image(frame)
return self.bgs.apply(img)
def get_next_image(self):
img = self.source.get_next_image()
return self.bgs.apply(img)
def rewind(self):
self.source.rewind()