Runtime validation and transformation library.
- TypeScript first;
- Sync and async validation and transformation flows;
- Circular object references support;
- Collect all validation issues, or exit early;
- Runtime type introspection;
- Human-oriented type coercion;
- High performance and low memory consumption;
- Zero dependencies;
- Pluggable architecture;
- Tree-shakable: 3 — 12 kB gzipped depending on what features you use;
- Check out the Cookbook for real-life examples!
npm install --save-prod doubter
Important
Docs on the next
branch describe the canary release
doubter@next
. Navigate to the
latest
branch for docs that describe the latest stable
release.
🚀 Features
- Introduction
- Validation errors
- Operations
- Conversions
- Early return
- Annotations and metadata
- Parsing context
- Shape piping
- Replace, allow, and deny a value
- Optional and non-optional
- Nullable and nullish
- Exclude a shape
- Deep partial
- Fallback value
- Branded types
- Type coercion
- Introspection
- Localization
- Plugins
- Advanced shapes
🎯 Data types
-
Strings
string
-
Symbols
symbol
-
Objects
object
record
instanceOf
-
Dates
date
-
Promises
promise
-
Shape composition
union
or
intersection
and
not
🍪 Cookbook
- Type-safe URL query params
- Type-safe environment variables
- Type-safe CLI arguments
- Type-safe
localStorage
- Rename object keys
- Conditionally applied shapes
Let's create a simple shape of a user:
import * as d from 'doubter';
const userShape = d.object({
name: d.string(),
age: d.number()
});
// ⮕ Shape<{ name: string, age: number }>
This is the shape of an object with two required properties "name" and "age". Shapes are the core concept in Doubter, they are validation and transformation pipelines that have an input and an output.
Apply the shape to an input value with the parse
method:
userShape.parse({
name: 'John Belushi',
age: 30
});
// ⮕ { name: 'John Belushi', age: 30 }
If the provided value is valid, then it is returned as is. If an incorrect value is provided, then a validation error is thrown:
userShape.parse({
name: 'Peter Parker',
age: 'seventeen'
});
// ❌ ValidationError: type.number at /age: Must be a number
Currently, the only constraint applied to the "age" property value is that it must be a number. Let's modify the shape to check that age is an integer and that user is an adult:
const userShape = d.object({
name: d.string(),
- age: d.number()
+ age: d.number().int().between(18, 100)
});
Here we added two operations to the number shape. Operations can check, refine, and alter input values. There are lots of operations available through plugins, and you can easily add your own operation when you need a custom logic.
Now shape would not only check that the "age" is a number, but also assert that it is an integer between 18 and 100:
userShape.parse({
name: 'Peter Parker',
age: 16
});
// ❌ ValidationError: number.gte at /age: Must be greater than or equal to 18
If you are using TypeScript, you can infer the type of the value that the shape describes:
type User = d.Input<typeof userShape>;
const user: User = {
name: 'Dan Aykroyd',
age: 27
};
Read more about static type inference and runtime type introspection.
Most of the shapes are synchronous, but they may become asynchronous when one of the below is used:
- Async operations;
- Async conversions;
d.promise
that constrains the fulfilled value;- Custom async shapes.
Let's have a look at a shape that synchronously checks that an input value is a string:
const shape1 = d.string();
// ⮕ Shape<string>
shape1.isAsync // ⮕ false
If we add an async operation to the string shape, it would become asynchronous:
const shape2 = d.string().checkAsync(
value => doAsyncCheck(value)
);
// ⮕ Shape<string>
shape2.isAsync // ⮕ true
The shape that checks that the input value is a Promise
instance is synchronous, because it doesn't have to wait for
the input promise to be fulfilled before ensuring that input has a proper type:
const shape3 = d.promise();
// ⮕ Shape<Promise<any>>
shape3.isAsync // ⮕ false
But if you want to check that a promise is fulfilled with a number, here when the shape becomes asynchronous:
const shape4 = d.promise(d.number());
// ⮕ Shape<Promise<number>>
shape4.isAsync // ⮕ true
Asynchronous shapes don't support synchronous parsing, and would throw an error if it is used:
shape4.parse(Promise.resolve(42));
// ❌ Error: Shape is async
shape4.parseAsync(Promise.resolve(42));
// ⮕ Promise { 42 }
On the other hand, synchronous shapes support asynchronous parsing:
d.string().parseAsync('Mars');
// ⮕ Promise { 'Mars' }
The shape that depends on an asynchronous shape, also becomes asynchronous:
const userShape = d.object({
avatar: d.promise(d.instanceOf(Blob))
});
// ⮕ Shape<{ avatar: Promise<Blob> }>
userShape.isAsync // ⮕ true
All shapes can parse input values and there are several methods for that purpose. Consider a number shape:
const shape1 = d.number();
// ⮕ Shape<number>
The parse
method takes an input value and
returns an output value, or throws a validation error if parsing fails:
shape.parse(42);
// ⮕ 42
shape.parse('Mars');
// ❌ ValidationError: type.number at /: Must be a number
It isn't always convenient to write a try-catch blocks to handle validation errors. Use the
try
method in such cases:
shape.try(42);
// ⮕ { ok: true, value: 42 }
shape.try('Mars');
// ⮕ { ok: false, issues: [ … ] }
Read more about issues in Validation errors section.
Sometimes you don't care about validation errors, and want a default value to be returned if things go south. Use the
parseOrDefault
method for that:
shape.parseOrDefault(42);
// ⮕ 42
shape.parseOrDefault('Mars');
// ⮕ undefined
shape.parseOrDefault('Pluto', 5.3361);
// ⮕ 5.3361
If you need a fallback value for a nested shape consider using the catch
method.
For asynchronous shapes there's an alternative for each of those methods:
parseAsync
,
tryAsync
, and
parseOrDefaultAsync
.
Methods listed in this section can be safely detached from the shape instance:
const { parseOrDefault } = d.string();
parseOrDefault('Jill');
// ⮕ 'Jill'
parseOrDefault(42);
// ⮕ undefined
All parsing methods accept options argument.
d.number().parse('42', { earlyReturn: true });
// ⮕ 42
Following options are available:
earlyReturn
-
If
true
then parsing is aborted after the first issue is encountered. Refer to Early return section for more details. context
-
The custom context that can be accessed from custom check callbacks, refinement predicates, alteration callbacks, converters, and fallback functions. Refer to Parsing context section for more details.
messages
-
An object that maps an issue code to a default message. Refer to Override default messages section for more details.
Important
Static type inference feature requires TypeScript 4.1 + with enabled
strictNullChecks
.
Since shapes can transform values, they can have different input and output types. For example, this string shape has the same input an output:
const shape1 = d.string();
// ⮕ Shape<string>
shape1.parse('Pluto');
// ⮕ 'Pluto'
shape1.parse(undefined);
// ❌ ValidationError: type.string at /: Must be a string
Let's derive a new shape that would replace undefined
input values with a default value
"Mars":
const shape2 = shape1.optional('Mars');
// ⮕ Shape<string | undefined, string>
shape2.parse('Pluto');
// ⮕ 'Pluto'
// 🟡 Replaces undefined with the default value
shape2.parse(undefined);
// ⮕ 'Mars'
Infer the input and output types of shape2
:
type Shape2Input = d.Input<typeof shape2>;
// ⮕ string | undefined
type Shape2Output = d.Output<typeof shape2>;
// ⮕ string
Besides static type inference, you can check at runtime what input types and literal values does the shape accept using shape introspection:
shape2.inputs;
// ⮕ [Type.STRING, undefined]
shape2.accepts(d.Type.STRING);
// ⮕ true
shape2.accepts('Mars');
// ⮕ true
shape2.accepts(42);
// ⮕ false
Validation errors which are thrown by parsing methods, and
Err
objects returned by
try
and tryAsync
methods have the issues
property which holds an array of validation issues:
const shape = d.object({ age: d.number() });
// ⮕ Shape<{ age: number }>
const result = shape.try({ age: 'seventeen' });
The result
contains the Err
object
with the array of issues:
{
ok: false,
issues: [
{
code: 'type.number',
path: ['age'],
input: 'seventeen',
message: 'Must be a number',
param: undefined,
meta: undefined
}
]
}
code
-
The code of the validation issue. In the example above,
"type"
code refers to a failed number type check. While shapes check input value type and raise type issues, there also various operations that also may raise issues with unique codes, see the table below.You can add a custom operation to any shape and return an issue with your custom code.
path
-
The object path as an array of keys, or
undefined
if there's no path. Keys can be strings, numbers (for example, array indices), symbols, and any other values since they can beMap
keys, seed.map
. input
-
The input value that caused a validation issue. Note that if the shape applies type coercion, conversions, or if there are operations that transform the value, then
input
may contain an already transformed value. message
-
The human-readable issue message. Refer to Localization section for more details.
param
-
The parameter value associated with the issue. For built-in checks, the parameter value depends on
code
, see the table below. meta
-
The optional metadata associated with the issue. Refer to Annotations and metadata section for more details.
Code | Caused by | Param |
---|---|---|
any.deny |
shape.deny(x) |
The denied value x |
any.exclude |
shape.exclude(…) |
The excluded shape |
any.refine |
shape.refine(…) |
The predicate callback |
array.includes |
d.array().includes(x) |
The included value x |
array.min |
d.array().min(n) |
The minimum array length n |
array.max |
d.array().max(n) |
The maximum array length n |
bigint.min |
d.bigint().min(n) |
The minimum value n |
bigint.max |
d.bigint().max(n) |
The maximum value n |
date.min |
d.date().min(n) |
The minimum value n |
date.max |
d.date().max(n) |
The maximum value n |
number.finite |
d.number().finite() |
— |
number.int |
d.number().int() |
— |
number.gt |
d.number().gte(x) |
The minimum value x |
number.lt |
d.number().lte(x) |
The maximum value x |
number.gte |
d.number().gt(x) |
The exclusive minimum value x |
number.lte |
d.number().lt(x) |
The exclusive maximum value x |
number.multipleOf |
d.number().multipleOf(x) |
The divisor x |
object.allKeys |
d.object().allKeys(keys) |
The keys array |
object.notAllKeys |
d.object().notAllKeys(keys) |
The keys array |
object.orKeys |
d.object().orKeys(keys) |
The keys array |
object.xorKeys |
d.object().xorKeys(keys) |
The keys array |
object.oxorKeys |
d.object().oxorKeys(keys) |
The keys array |
object.exact |
d.object().exact() |
The array of unknown keys |
object.plain |
d.object().plain() |
— |
set.min |
d.set().min(n) |
The minimum Set size n |
set.max |
d.set().max(n) |
The maximum Set size n |
string.nonBlank |
d.string().nonBlank() |
— |
string.min |
d.string().min(n) |
The minimum string length n |
string.max |
d.string().max(n) |
The maximum string length n |
string.regex |
d.string().regex(re) |
The regular expression re |
string.includes |
d.string().includes(x) |
The included string x |
string.startsWith |
d.string().startsWith(x) |
The substring x |
string.endsWith |
d.string().endsWith(x) |
The substring x |
type.array |
d.array() |
— |
type.bigint |
d.bigint() |
— |
type.boolean |
d.boolean() |
— |
type.const |
d.const(x) |
The expected constant value x |
type.date |
d.date() |
— |
type.enum |
d.enum(…) |
The array of unique value |
type.function |
d.function() |
— |
type.instanceOf |
d.instanceOf(Class) |
The class constructor Class |
type.intersection |
d.and(…) |
— |
type.map |
d.map() |
— |
type.never |
d.never() |
— |
type.number |
d.number() |
— |
type.object |
d.object() |
— |
type.promise |
d.promise() |
— |
type.tuple |
d.tuple(…) |
The expected tuple length |
type.set |
d.set() |
— |
type.string |
d.string() |
— |
type.symbol |
d.symbol() |
— |
type.union |
d.or(…) |
Issues raised by a union |
Important
While operations are a powerful tool, most of the time you don't need to add operations directly. Instead, you can use the higher-level API: checks, refinements, and alterations.
Operations can check and transform the shape output value. Let's create a shape with an operation that trims an input string:
const shape1 = d.string().addOperation(value => {
return { ok: true, value: value.trim() };
});
// ⮕ StringShape
shape1.parse(' Space ');
// ⮕ 'Space'
Operations added via addOperation
must return a Result
:
null
if the value is valid and unchanged;- an
Ok
object (as in example above) if the value was transformed; - an array of
Issue
objects if the operation has failed.
Multiple operations can be added to shape, and they are executed in the same order they were added. To access all
operations that were added use the
operations
property.
In contrast to conversions and pipes, operations don't change the base shape. So you can mix them with other operations that belong to the prototype of the base shape:
const shape2 = d
.string()
.addOperation(value => {
return { ok: true, value: value.trim() };
})
// 🟡 d.StringShape.prototype.min
.min(6);
shape2.parse(' Neptune ');
// ⮕ 'Neptune'
shape2.parse(' Moon ');
// ❌ ValidationError: string.min at /: Must have the minimum length of 6
Operations can be parameterized. This is particularly useful if you want to reuse the operation multiple times.
const checkRegex: d.OperationCallback = (value, param) => {
if (param.test(value)) {
return null;
}
return [{ message: 'Must match ' + param }];
};
// 🟡 Pass a param when operation is added
const shape3 = d.string().addOperation(checkRegex, { param: /a/ });
// ⮕ StringShape
shape3.parse('Mars');
// ⮕ 'Mars'
shape3.parse('Venus');
// ❌ ValidationError: unknown at /: Must match /a/
Operations have access to parsing options, so you can provide a custom context to change the operation behaviour:
const shape4 = d.string().addOperation((value, param, options) => {
return {
ok: true,
value: value.substring(options.context.substringStart)
};
});
// ⮕ StringShape
shape4.parse(
'Hello, Bill',
{
// 🟡 Provide the context during parsing
context: { substringStart: 7 }
}
);
// ⮕ 'Bill'
Operations can throw a ValidationError
to notify Doubter that parsing issues occurred. While this has the same effect as returning an array of issues, it is
recommended to throw a ValidationError
as the last resort since catching errors has a high performance penalty.
const shape5 = d.number().addOperation(value => {
if (value < 32) {
throw new ValidationError([{ code: 'too_small' }]);
}
return null;
});
shape5.try(16);
// ⮕ { ok: false, issues: [{ code: 'too_small' }] }
Operations are executed only if the base shape type requirements are satisfied:
const shape = d.string().addOperation(value => {
return { ok: true, value: value.trim() };
});
// 🟡 Operation isn't executed because 42 isn't a string
shape.parse(42);
// ❌ ValidationError: type.string at /: Must be a string
For composite shapes, operations may become non-type-safe. Let's consider an object shape with an operation:
const checkUser: d.OpeationCallback = user => {
if (user.age < user.yearsOfExperience) {
return [{ code: 'invalid_age' }];
}
return null;
};
const userShape = d
.object({
age: d.number(),
yearsOfExperience: d.number()
})
.addOperation(checkUser);
// ⮕ Shape<{ age: number, yearsOfExperience: number }>
The checkUser
operation is guaranteed to receive an object, but its properties aren't guaranteed to have correct
types.
Use tolerance
operation
option to change how the operation behaves in case there are issues caused by the shape it is added to:
"skip"
-
If the shape or preceding operations have raised issues, then the operation is skipped but consequent operations are still applied.
"abort"
-
If the shape or preceding operations have raised issues, then the operation is skipped and consequent operations aren't applied. Also, if this operation itself raises issues then consequent operations aren't applied.
"auto"
-
The operation is applied regardless of previously raised issues. This is the default behavior.
So to make checkUser
operation type-safe, we can use "skip" or "abort".
const userShape = d
.object({
age: d.number(),
yearsOfExperience: d.number()
})
- .addOperation(checkUser);
+ .addOperation(checkUser, { tolerance: 'abort' });
Some shapes cannot guarantee that the input value is of the required type. For example, if any of the underlying shapes in an intersection shape have raised issues, an intersection shape itself cannot guarantee that its operations would receive the value of the expected type, so it doesn't apply any operations if there are issues.
These shapes never apply operations if an underlying shape has raised an issue:
Operations callbacks can be asynchronous. They have the same set of arguments as synchronous alternative, by must return a promise. Consequent operations after the asynchronous operation would wait for its result:
const shape = d
.string()
.addAsyncOperation(async value => {
if (await doAsyncCheck(value)) {
return null;
}
return [{ code: 'kaputs' }];
});
shape.isAsync;
// ⮕ true
shape.parseAsync('Hello');
Adding an async operation to the shape, makes shape itself async, so use
parseAsync
,
tryAsync
, or
parseOrDefaultAsync
.
Checks are the most common operations that allow constraining the input value beyond type assertions. For example, if you want to constrain a numeric input to be greater than or equal to 5:
const shape = d.number().check(value => {
if (value < 5) {
// 🟡 Return an issue, or an array of issues
return { code: 'kaputs' };
}
});
// ⮕ NumberShape
shape.parse(10);
// ⮕ 10
shape.parse(3);
// ❌ ValidationError: kaputs at /
A check callback receives the shape output value and must return an issue or an array of issues if the value is invalid.
If the value is valid, a check callback must return null
, undefined
, or an empty array.
Add asynchronous checks using
checkAsync
. This method has the same
semantics as check
but returns a promise
and makes the shape asynchronous.
Note
You can parameterize checks and set tolerance for issues the same way as any other operation.
Most shapes have a set of built-in checks. The check we've just implemented above is called
gte
(greater than equals):
d.number().gte(5);
Add as many checks as you need to the shape. You can mix built-in checks with any other custom operations, they are executed in the same order they were added.
d.string().max(4).regex(/a/).try('Pluto');
In the example above, an Err
object is
returned:
{
ok: false,
issues: [
{
code: 'string.max',
path: [],
input: 'Pluto',
message: 'Must have the maximum length of 4',
param: 4,
meta: undefined
},
{
code: 'string.regex',
path: [],
input: 'Pluto',
message: 'Must match the pattern /a/',
param: /a/,
meta: undefined
}
]
}
Note
You can find the list of issue codes and corresponding param values in Validation errors section.
Refinements are operations that use a predicate callback to validate an input. For example, the shape below would raise an issue if the input string is less than six characters long.
const shape1 = d.string().refine(value => value.length > 5);
// ⮕ Shape<string>
shape1.parse('Uranus');
// ⮕ 'Uranus'
shape1.parse('Mars');
// ❌ ValidationError: any.refine at /: Must conform the predicate
Add asynchronous refinements using
refineAsync
. This method has the
same semantics as refine
but returns a
promise and makes the shape asynchronous.
Use refinements to narrow the output type of the shape:
function isMarsOrPluto(value: string): value is 'Mars' | 'Pluto' {
return value === 'Mars' || value === 'Pluto';
}
d.string().refine(isMarsOrPluto)
// ⮕ Shape<string, 'Mars' | 'Pluto'>
By default, refine
raises issues which have the "any.refine"
code. You can provide a custom
code:
const shape2 = d.string().refine(
isMarsOrPluto,
{
code: 'illegal_planet',
message: 'Must be Mars or Pluto'
}
);
shape2.parse('Venus');
// ❌ ValidationError: illegal_planet at /: Must be Mars or Pluto
Note
You can parameterize refinements and set tolerance for issues the same way as any other operation.
Alterations are operations that synchronously transform the shape output value without changing its type. For example, let's consider a string shape that trims the value and then checks that it has at least 3 characters:
d.string()
.alter(value => value.trim())
.min(3);
// ⮕ StringShape
Add asynchronous alterations using
alterAsync
. This method has the
same semantics as alter
but returns a
promise and makes the shape asynchronous.
Use any transformation library in conjunction with alternations:
d.number().alter(Math.abs).alter(Math.pow, { param: 3 });
Alteration callbacks must return the value of the same type, so consequent operations are type-safe. If you want to convert the shape output value to another type, consider using conversions.
Note
You can parameterize alterations and set tolerance for issues the same way as any other operation.
Conversions are close relatives of alterations that also transform shape output value. The main difference from alterations is that conversions can change the shape output type. Let's consider a shape that takes a string as an input and converts it to a number:
const shape = d.string().convert(parseFloat);
// ⮕ Shape<string, number>
This shape ensures that the input value is a string and passes it to a converter callback:
shape.parse('42');
// ⮕ 42
shape.parse('seventeen');
// ⮕ NaN
Throw a ValidationError
inside the callback to notify parser that the conversion cannot be successfully completed:
function toNumber(input: string): number {
const output = parseFloat(input);
if (isNaN(output)) {
throw new d.ValidationError([{ code: 'nan' }]);
}
return output;
}
const shape = d.string().convert(toNumber);
shape.parse('42');
// ⮕ 42
shape.parse('seventeen');
// ❌ ValidationError: nan at /
Let's consider a synchronous conversion:
const syncShape1 = d.string().convert(
value => 'Hello, ' + value
);
// ⮕ Shape<string>
syncShape1.isAsync // ⮕ false
syncShape1.parse('Jill');
// ⮕ 'Hello, Jill'
The converter callback receives and returns a string and so does syncShape1
.
Now lets return a promise from the converter callback:
const syncShape2 = d.string().convert(
value => Promise.resolve('Hello, ' + value)
);
// ⮕ Shape<string, Promise<string>>
syncShape2.isAsync // ⮕ false
syncShape2.parse('Jill');
// ⮕ Promise<string>
Notice that syncShape2
is asymmetric: it expects a string input and converts it to a Promise<string>
. syncShape2
is still synchronous, since the converter callback synchronously wraps a value in a promise.
Now let's create an asynchronous shape using the async conversion:
const asyncShape1 = d.string().convertAsync(
value => Promise.resolve('Hello, ' + value)
);
// ⮕ Shape<string>
// 🟡 Notice that the shape is async
asyncShape1.isAsync // ⮕ true
await asyncShape1.parseAsync('Jill');
// ⮕ Promise { 'Hello, Jill' }
Notice that asyncShape1
converts the input string value to output string but the conversion itself is asynchronous.
A shape is asynchronous if it uses asynchronous conversions. Here's an asynchronous object shape:
const asyncShape2 = d.object({
foo: d.string().convertAsync(
value => Promise.resolve(value)
)
});
// ⮕ Shape<{ foo: string }>
asyncShape2.isAsync // ⮕ true
Refer to Async shapes section for more details on when shapes can become asynchronous.
By default, Doubter collects all issues during parsing. In some cases, you may want to halt parsing and raise a
validation error as soon as the first issue was encountered. To do this, pass the
earlyReturn
option to the parsing methods.
d.string()
.max(4)
.regex(/a/)
.try('Pluto', { earlyReturn: true });
This would return the Err
object with
only one issue:
{
ok: false,
issues: [
{
code: 'string.max',
path: undefined,
input: 'Pluto',
message: 'Must have the maximum length of 4',
param: 4,
meta: undefined
}
]
}
Shapes and issues can be enriched with additional metadata.
Add an annotation to a shape:
const shape = d.string().annotate({ description: 'Username' });
shape.annotations;
// ⮕ { description: 'Username' }
annotate
returns the clone of the
shape with updated annotations. Annotations are merged when you add them:
shape.annotate({ foo: 'bar' }).annotations;
// ⮕ { description: 'Username', foo: 'bar' }
Validation issues have a
meta
property that you can use
to store an arbitrary data.
You can pass the meta
option to any built-in check and its value is assigned to the meta
property of the raised validation issue.
const shape = d.number().gt(5, { meta: 'Useful data' });
// ⮕ Shape<number>
const result = shape.try(2);
// ⮕ { ok: false, issues: … }
if (!result.ok) {
result.issues[0].meta // ⮕ 'Useful data'
}
This comes handy if you want to enhance an issue with an additional data that can be used later during issues processing. For example, during localization.
Inside operation callbacks, check callbacks, refinement predicates,
alteration callbacks, converters, fallback functions, and
message callbacks you can access options passed to the parser. The
context
option may
store an arbitrary data, which is undefined
by default.
For example, here's how you can use context to convert numbers to formatted strings:
const shape = d.number().convert(
(value, options) => new Intl.NumberFormat(options.context.locale).format(value)
);
// ⮕ Shape<number, string>
shape.parse(
1000,
{
// 🟡 Pass a context
context: { locale: 'en-US' }
}
);
// ⮕ '1,000'
With shape piping you to can pass the shape output to another shape.
d.string()
.convert(parseFloat)
.to(d.number().lt(5).gt(10));
// ⮕ Shape<string, number>
For example, you can validate that an input value is an instance of a class and then validate its
properties using object
:
class Planet {
constructor(readonly name: string) {}
}
const shape = d.instanceOf(Planet).to(
d.object({
name: d.string().min(4)
})
);
shape.parse({ name: 'Pluto' });
// ❌ ValidationError: type.instanceOf at /: Must be a class instance
shape.parse(new Planet('X'));
// ❌ ValidationError: string.min at /name: Must have the minimum length of 4
shape.parse(new Planet('Mars'));
// ⮕ Planet { name: 'Mars' }
All shapes support replace
,
allow
, and
deny
methods that change how
separate literal values are processed.
You can replace an input value with an output value:
const shape1 = d.enum(['Mars', 'Pluto']).replace('Pluto', 'Jupiter');
// ⮕ Shape<'Mars' | 'Pluto', 'Mars' | 'Jupiter'>
shape1.parse('Mars');
// ⮕ 'Mars'
shape1.parse('Pluto');
// ⮕ 'Jupiter'
With replace
you can extend possible input values:
d.const('Venus').replace('Mars', 'Uranus');
// ⮕ Shape<'Venus' | 'Mars', 'Venus' | 'Uranus'>
This would also work with non-literal input types:
d.number().replace(0, 'zero');
// ⮕ Shape<number, number | 'zero'>
replace
narrows its arguments to literal type but in TypeScript type system not all values have a separate literal
type. For example, there's no literal type for NaN
and Infinity
values. In such cases replace
doesn't exclude the
replaced value type from the output type:
d.enum([33, 42]).replace(NaN, 0);
// ⮕ Shape<number, 33 | 42 | 0>
Replaced values aren't processed by the underlying shape:
const shape2 = d.number().gte(3).replace(0, 'zero');
// ⮕ Shape<number | 'zero'>
shape2.parse(2);
// ❌ ValidationError: number.gte at /: Must be greater than 3
// 🟡 Notice that 0 doesn't satisfy the gte constraint
shape2.parse(0);
// ⮕ 'zero'
You can allow a value as both input and output:
d.const('Mars').allow('Pluto');
// ⮕ Shape<'Mars' | 'Pluto'>
allow
follows exactly the same semantics as replace
.
You can allow a value for a non-literal input types:
const shape = d.number().finite().allow(NaN);
// ⮕ Shape<number>
shape.parse(NaN);
// ⮕ NaN
shape.parse(Infinity);
// ❌ ValidationError: number.finite at /: Must be a finite number
Consider the enum shape:
const shape1 = d.enum(['Mars', 'Pluto', 'Jupiter']);
// ⮕ Shape<'Mars' | 'Pluto' | 'Jupiter'>
To remove a value from this enum you can use the
deny
method:
shape1.deny('Pluto');
// ⮕ Shape<'Mars' | 'Jupiter'>
Value denial works with any shape. For example, you can deny a specific number:
const shape2 = d.number().deny(42);
// ⮕ Shape<number>
shape2.parse(33);
// ⮕ 33
shape2.parse(42);
// ❌ ValidationError: any.deny at /: Must not be equal to 42
deny
prohibits value for both input and output:
const shape3 = d.number().convert(value => value * 2).deny(42);
// ⮕ Shape<number>
shape3.parse(21);
// ❌ ValidationError: any.deny at /: Must not be equal to 42
Marking a shape as optional allows undefined
in both its input and output:
d.string().optional();
// ⮕ Shape<string | undefined>
You can provide a default value of any type, so it would be used as an output if input value is undefined
:
d.string().optional(42);
// ⮕ Shape<string | undefined, string | 42>
You can achieve the same behaviour using a union:
d.or([
d.string(),
d.undefined()
]);
// ⮕ Shape<string | undefined>
Or using allow
:
d.string().allow(undefined);
// ⮕ Shape<string | undefined>
You can mark any shape as non-optional which effectively denies undefined
values from both
input and output. For example, lets consider a union of an optional string and a number:
const shape1 = d.or([
d.string().optional(),
d.number()
]);
// ⮕ Shape<string | undefined | number>
shape1.parse(undefined);
// ⮕ undefined
const shape2 = shape1.nonOptional();
// ⮕ Shape<string | number>
shape2.parse(undefined);
// ❌ ValidationError: any.deny at /: Must not be equal to undefined
Marking a shape as nullable allows null
for both input and output:
d.string().nullable();
// ⮕ Shape<string | null>
You can provide a default value, so it would be used as an output if input value is null
:
d.string().nullable(42);
// ⮕ Shape<string | null, string | 42>
To allow both null
and undefined
values use nullish
:
d.string().nullish();
// ⮕ Shape<string | null | undefined>
nullish
also supports the default value:
d.string().nullish(8080);
// ⮕ Shape<string | null | undefined, string | 8080>
Shape exclusions work the same way as Exclude
helper type in TypeScript. When an exclusion is applied, the output
value returned by the underlying shape must not conform the excluded shape.
const shape = d.enum(['Mars', 'Venus', 'Pluto']).exclude(d.const('Pluto'));
// ⮕ Shape<'Mars' | 'Venus' | 'Pluto', 'Mars' | 'Venus'>
shape.parse('Mars');
// ⮕ 'Mars'
shape.parse('Pluto');
// ❌ ValidationError: any.exclude at /: Must not conform the excluded shape
Exclusions work with any shape combinations:
d.or([d.number(), d.string()]).exclude(d.string());
// ⮕ Shape<number | string, number>
Sometimes you need an exclusion at runtime, but don't need it on the type level. For example, let's define a shape that allows any number except the [3, 5] range:
// 🟡 Note that the shape output is inferred as never
d.number().exclude(d.number().min(3).max(5));
// ⮕ Shape<number, never>
Since the excluded shape constrains the number
type, the output type is inferred as never
. While the excluded shape
only restricts a limited range of numbers, there's no way to express this in TypeScript. So here's the workaround:
d.number().not(d.number().min(3).max(5));
// ⮕ Shape<number>
not
works exactly like exclude
at runtime, but it doesn't perform the exclusion on the type level.
d.enum(['Bill', 'Jill']).not(d.const('Jill'));
// ⮕ Shape<'Bill', 'Jill'>
You can also use d.not
to negate an arbitrary shape.
All object-like shapes (objects, arrays, maps, sets, promises, etc.) can be converted to a deep partial alternative
using deepPartial
method:
const shape1 = d.array(
d.object({
name: d.string(),
age: d.number()
})
);
// ⮕ Shape<{ name: string, age: number }[]>
shape1.deepPartial();
// ⮕ Shape<Array<{ name?: string, age?: number } | undefined>>
Unions, intersections and lazy shapes can also be converted to deep partial:
const shape2 = d
.or([
d.number(),
d.object({ name: d.string() })
])
.deepPartial()
// ⮕ Shape<number | { name?: string }>
shape2.parse(42);
// ⮕ 42
shape2.parse({ name: undefined });
// ⮕ { name: undefined }
shape2.parse({ name: 'Frodo' });
// ⮕ { name: 'Frodo' }
shape2.parse({ name: 8080 });
// ❌ ValidationError: type.string at /name: Must be a string
Deep partial isn't applied to converted shapes:
const shape2 = d
.object({
years: d.array(d.string())
.convert(years => years.map(parseFloat))
})
.deepPartial();
// ⮕ Shape<{ years?: string[] }, { years?: number[] }>
In the example above, array elements don't allow undefined
even after deepPartial
was applied, this happened because
array is converted during parsing.
Note
You can also implement deep partial protocol in your custom shapes.
If issues were detected during parsing a shape can return a fallback value.
const shape1 = d.string().catch('Mars');
shape1.parse('Pluto');
// ⮕ 'Pluto'
shape1.parse(42);
// ⮕ 'Mars'
Pass a callback as a fallback value, it would be executed every time the catch clause is reached:
const shape2 = d.number().catch(Date.now);
shape2.parse(42);
// ⮕ 42
shape2.parse('Pluto');
// ⮕ 1671565311528
shape2.parse('Mars');
// ⮕ 1671565326707
Fallback functions receive an input value, an array of issues and parsing options (so you can access your custom context if needed).
d.string().catch((input, issues, options) => {
// Return a fallback value
});
A fallback function can throw a ValidationError
to indicate that a fallback value cannot be
produced. Issues from this error would be incorporated in the parsing result.
const shape3 = d.object({
name: d.string().catch(() => {
throw new d.ValidationError([{ code: 'kaputs' }]);
})
});
shape3.parse({ name: 47 });
// ❌ ValidationError: kaputs at /name
In TypeScript, values are considered to be of equivalent type if they are structurally the same. For example, plain strings are assignable to one another:
function bookTicket(flightCode: string): void {
// Booking logic
}
// 🟡 No type errors, but "Bill" isn't a flight code
bookTicket('Bill');
In some cases, it can be desirable to simulate nominal typing inside TypeScript. For instance, you may wish to write a function that only accepts an input that has been validated by Doubter. This can be achieved with branded types:
const flightCodeShape = d.string().refine(isFlightCode).brand<'flightCode'>();
// ⮕ Shape<string, Branded<string, 'flightCode'>>
type FlightCode = d.Output<typeof flightCodeShape>;
// 🟡 Note that the argument type isn't a plain string
function bookTicket(flightCode: FlightCode): void {
// Booking logic
}
bookTicket(flightCodeShape.parse('BA2490'));
// Ok, valid flight code
bookTicket('Bill');
// ❌ Error: Expected BRAND to be flightCode
Note
Branded types don't affect the runtime result of parse
. It is a static-type-only construct.
Type coercion is the process of converting value from one type to another (such as a string to a number, an array to
a Set
, and so on).
When coercion is enabled, input values are implicitly converted to the required input type whenever possible. For example, you can coerce input values to a number type:
const shape = d.number().coerce();
// ⮕ NumberShape
shape.isCoercing // ⮕ true
shape.parse([new String('8080')]);
// ⮕ 8080
shape.parse(null);
// ⮕ 0
Coercion rules differ from JavaScript so the behavior is more predictable and human-like. With Doubter, you can coerce input to the following types:
If you want to implement a custom coercion, you can use catch
to handle invalid input values:
const yesNoShape = d.boolean().catch((value, issues) => {
if (value === 'yes') {
return true;
}
if (value === 'no') {
return false;
}
throw new ValidationError(issues);
});
yesNoShape.parse('yes');
// ⮕ true
d.array(yesNoShape).parse([true, 'no']);
// ⮕ [true, false]
yesNoShape.parse('true');
// ❌ ValidationError: type.boolean at /: Must be a boolean
Or you can use d.convert
to preprocess all input values:
const yesNoShape = d
.convert(value => {
if (value === 'yes') {
return true;
}
if (value === 'no') {
return false;
}
// Let the consequent shape handle this value
return value;
})
.to(d.boolean());
yesNoShape.parse('yes');
// ⮕ true
yesNoShape.parse('true');
// ❌ ValidationError: type.boolean at /: Must be a boolean
Doubter provides various features to introspect your shapes at runtime. Let's start by accessing a shape input types
using the inputs
property:
const shape1 = d.or([d.string(), d.boolean()]);
// ⮕ Shape<string | boolean>
shape1.inputs;
// ⮕ [Type.STRING, Type.BOOLEAN]
inputs
array may contain literal values:
d.enum(['Mars', 42]).inputs;
// ⮕ ['Mars', 42]
Literal values are absorbed by their type in unions.
const shape2 = d.or([
d.enum(['Uranus', 1984]),
d.number()
]);
// ⮕ Shape<'Uranus' | number>
shape2.inputs;
// ⮕ ['Uranus', Type.NUMBER]
If inputs
is an empty array, it means that the shape doesn't accept any input values, and would always raise
validation issues.
const shape3 = d.and([d.number(), d.const('Mars')]);
// ⮕ Shape<never>
shape3.inputs;
// ⮕ []
To detect the type of the value use
Type.of
:
Type.of('Mars');
// ⮕ Type.STRING
Type.of(Type.NUMBER);
// ⮕ Type.NUMBER
Types returned from Type.of
are a superset of types returned from the typeof
operator.
Type.of | typeof |
---|---|
Type.OBJECT | 'object' |
Type.ARRAY | |
Type.DATE | |
Type.PROMISE | |
Type.SET | |
Type.MAP | |
Type.NULL | |
Type.FUNCTION | 'function' |
Type.STRING | 'string' |
Type.SYMBOL | 'symbol' |
Type.NUMBER | 'number' |
Type.BIGINT | 'bigint' |
Type.BOOLEAN | 'boolean' |
Type.UNDEFINED | 'undefined' |
Type.UNKNOWN | — |
Type.UNKNOWN
type emerges when accepted inputs cannot be statically inferred. For example, if d.any
,
d.unknown
, or d.convert
are used:
const shape1 = d.convert(parseFloat);
// ⮕ Shape<any>
shape1.inputs;
// ⮕ [Type.UNKNOWN]
Type.UNKNOWN
behaves like TypeScript's unknown
.
It absorbs other types in unions:
const shape2 = d.or([d.string(), d.unknown()]);
// ⮕ Shape<unknown>
shape2.inputs;
// ⮕ [Type.UNKNOWN]
And it is erased in intersections:
const shape3 = d.and([d.string(), d.unknown()]);
// ⮕ Shape<string>
shape3.inputs;
// ⮕ [Type.STRING]
const shape4 = d.and([d.never(), d.unknown()]);
// ⮕ Shape<never>
shape4.inputs;
// ⮕ []
To check that the shape accepts a particular input type or value use the
accepts
method:
const shape1 = d.string();
// ⮕ Shape<string>
shape1.accepts(Type.STRING);
// ⮕ true
shape1.accepts('Venus');
// ⮕ true
Check that a value is accepted:
const shape2 = d.enum(['Mars', 'Venus']);
// ⮕ Shape<'Mars' | 'Venus'>
shape2.accepts('Mars');
// ⮕ true
shape2.accepts('Pluto');
// ⮕ false
// 🟡 Enum doesn't accept arbitrary strings
shape2.accepts(Type.STRING);
// ⮕ false
For example, you can check that the shape is optional by checking that it accepts
undefined
input value:
const shape3 = d.number().optional();
// ⮕ Shape<number | undefined>
shape3.accepts(1984);
// ⮕ true
shape3.accepts(undefined);
// ⮕ true
// 🟡 Note that null isn't accepted
shape3.accepts(null);
// ⮕ false
The fact that a shape accepts a particular input type or value, does not guarantee that it wouldn't raise a validation
issue. For example, consider the pipe from d.any
to d.string
:
const fuzzyShape = d.any().to(d.string());
// ⮕ Shape<any, string>
fuzzyShape
accepts Type.UNKNOWN
because it is based on d.any
:
fuzzyShape.inputs;
// ⮕ [Type.UNKNOWN]
Since fuzzyShape
accepts any values, an undefined
is also accepted:
fuzzyShape.accepts(undefined);
// ⮕ true
But parsing undefined
with fuzzyShape
would produce an error, since undefined
doesn't satisfy d.string
on the
right-hand side of the pipe:
fuzzyShape.parse(undefined);
// ❌ ValidationError: type.string at /: Must be a string
Object, array, union ond other composite shapes provide access to their nested shapes:
const userShape = d.object({
name: d.string(),
age: d.number()
});
// ⮕ Shape<{ name: string, age: number }>
userShape.propShapes.name;
// ⮕ Shape<string>
const userOrNameShape = d.or([userShape, d.string()]);
// ⮕ Shape<{ name: string, age: number } | string>
userOrNameShape.shapes[0];
// ⮕ userShape
Shape.at
method derives a sub-shape at the
given key, and if there's no such key then null
is returned:
userShape.at('age');
// ⮕ Shape<number>
userShape.at('emotionalDamage');
// ⮕ null
This is especially useful with unions and intersections:
const shape = d.or([
d.object({
foo: d.string()
}),
d.object({
foo: d.number()
})
]);
shape.at('foo')
// ⮕ Shape<string | number>
shape.at('bar')
// ⮕ null
All shape factories and built-in checks support a custom issue messages:
d.string('Hey, string here').min(3, 'Too short');
Pass a function as a message, and
it would receive an issue that would be raised, and parsing options. You can assign
issue.message
or return a message. For example, when using with React you may return a JSX element:
const reactMessage: d.Message = (issue, options) => (
<span style={{ color: 'red' }}>
The minimum length is {issue.param}
</span>
);
d.number().min(5, reactMessage);
Semantics described above are applied to the
message
option as well:
d.string().length(3, { message: 'Invalid length' })
Default issue messages can be overridden by
messages
option:
import * as d from 'doubter';
d.string().parse(42, {
messages: {
'type.string': 'Yo, not a string!'
}
});
// ❌ ValidationError: type.string at /: Yo, not a string!
The full list of issue codes can be found in Validation errors section.
By default, when you import Doubter, you also get all built-in plugins as well:
import * as d from 'doubter';
d.string().min(2); // ✅ min is defined
d.number().gte(3); // ✅ gte is defined
If you import doubter/core
, you would get only core set of shapes without any plugins:
import * as d from 'doubter/core';
d.string().min(2); // ❌ min is undefined
d.number().gte(3); // ❌ gte is undefined
You can cherry-pick plugins that you need:
import * as d from 'doubter/core';
import 'doubter/plugin/string-essentials';
d.string().min(2); // ✅ min is defined
d.number().gte(3); // ❌ gte is undefined
-
Bigint essentials
positive
negative
nonPositive
nonNegative
min
max
-
Date essentials
min
max
after
before
toISOString
toTimestamp
-
Number essentials
finite
int
positive
negative
nonPositive
nonNegative
between
gt
lt
gte
lte
min
max
multipleOf
safe
-
Object essentials
plain
allKeys
notAllKeys
orKeys
xorKeys
oxorKeys
-
String essentials
length
min
max
regex
includes
startsWith
endsWith
nonBlank
nonEmpty
trim
toLowerCase
toUpperCase
-
Object eval
Ifnew Function
calls are allowed by the environment, this plugin compiles internal methods of theObjectShape
to boost performance.
- @doubter/plugin-string-format
ExtendsStringShape
with email, FQDN, MIME, BIC, ISIN, Luhn, and many other format checks.
You can combine Doubter with your favourite predicate library using refinements.
For example, create a shape that validates that input is an email using Validator.js:
import * as d from 'doubter';
import isEmail from 'validator/lib/isEmail';
const emailShape = d.string().refine(isEmail, 'Must be an email');
// ⮕ Shape<string>
emailShape.parse('Not an email');
// ❌ ValidationError: any.refine at /: Must be an email
emailShape.parse('foo@bar.com');
// ⮕ 'foo@bar.com'
You can use Doubter alterations with various utility libraries, such as Lodash:
import * as d from 'doubter';
import * as _ from 'lodash';
const shape = d.array(d.number()).alter(_.uniq);
shape.parse([1, 2, 3, 3, 2]);
// ⮕ [1, 2, 3])
Or use native JavaScript methods as alteration callbacks:
const shape = d.number().alter(Math.abs).alter(Math.round).min(3);
shape.parse(-3.1415);
// ⮕ 3
shape.parse(2);
// ❌ ValidationError: number.gte at /: Must be greater than or equal to 3
Plugins use TypeScript's module augmentation to extend functionality of shapes exported from the doubter/core module.
Below is an example, how you can implement a naive email check and extend the
StringShape
.
import { StringShape } from 'doubter/core';
declare module 'doubter/core' {
interface StringShape {
email(): this;
}
}
StringShape.prototype.email = function () {
return this.addOperation(value => {
if (value.includes('@')) {
return null;
}
return [{ code: 'email', message: 'Must be an email' }]
});
};
Now you can use this check when building a string shape:
const shape = d.string().email();
shape.parse('foo@bar.com');
// ⮕ 'foo@bar.com'
shape.parse('foo');
// ❌ ValidationError: email at /: Must be an email
You can use generic operations, checks, refinements, alterations, conversions, and any other functionality of the shape that is being extended.
You can create custom shapes by extending the
Shape
class.
Shape
has several protected methods that you can override to change different aspects of the shape logic.
-
_apply(input, options, nonce)
-
Synchronous input parsing is delegated to this method. It receives an
input
that must be parsed and should return theResult
: -
_applyAsync(input, options, nonce)
-
Asynchronous input parsing is delegated to this method. It has the same semantics as
_apply
but returns aPromise
. You need to override this method only if you have a separate logic for async parsing. -
_isAsync()
-
The value returned from this method is toggles which method is used for parsing:
- if
true
then_applyAsync
would be used for parsing, and_apply
would always throw an error; - if
false
then_apply
can be used for parsing along with_applyAsync
.
- if
-
_getInputs()
-
Must return an array of types and values that can be processed by the shape. Elements of the returned array don't have to be unique. Refer to Introspection section for more details about types.
Let's create a custom shape that parses an input string as a number:
class NumberLikeShape extends d.Shape<string, number> {
protected _apply(input: unknown, options: d.ParseOptions, nonce: number): d.Result<number> {
// 1️⃣ Validate the input and return issues if it is invalid
if (typeof input !== 'string' || isNaN(parseFloat(input))) {
return [{
code: 'kaputs',
message: 'Must be a number-like',
input,
}];
}
// 2️⃣ Apply operations to the output value
return this._applyOperations(input, parseFloat(input), options, null) as d.Result;
}
}
Now let's use this shape alongside with other built-in shapes:
const shape = d.array(new NumberLikeShape());
// ⮕ Shape<string[], number[]>
shape.parse(['42', '33']);
// ⮕ [42, 33]
shape.parse(['seventeen']);
// ❌ ValidationError: kaputs at /0: Must be a number-like
To enable deepPartial
support, your shape must implement
DeepPartialProtocol
.
class MyShape
extends Shape
implements DeepPartialProtocol<MyDeepPartialShape> {
deepPartial(): MyDeepPartialShape {
// Create and return a deep partial version of MyShape
}
}
This is sufficient to enable type inference and runtime support for deepPartial
method.
The chart below showcases the performance comparison of Doubter and its peers, in terms of millions of operations per second (greater is better).
Tests were conducted using TooFast on Apple M1 with Node.js v20.4.0.
To reproduce the performance test suite results, clone this repo and run:
npm ci
npm run build
npm run perf -- -t overall
Detailed results
Success path
Loose validation
● doubter 7.9 MHz ± 0.5% 128.4 B ± 0.11%
● Ajv 15.8 MHz ± 1.33% 156.2 B ± 0.01%
● zod 1.1 MHz ± 0.5% 4.2 kB ± 0.01%
● myzod 2.4 MHz ± 0.5% 506.4 B ± 0.04%
● valita 4.4 MHz ± 0.5% 117.9 B ± 0.07%
● valibot 3.0 MHz ± 0.5% 1.3 kB ± 0.01%
Strict validation
● doubter 4.3 MHz ± 0.5% 149.9 B ± 0.06%
● Ajv 13.1 MHz ± 1.15% 152.3 B ± 0.01%
● zod 1.2 MHz ± 0.5% 4.2 kB ± 0.01%
● myzod 2.5 MHz ± 0.5% 316.7 B ± 0.13%
● valita 4.3 MHz ± 0.5% 120.7 B ± 0.46%
● valibot 3.0 MHz ± 0.5% 1.3 kB ± 0%
Failure path
Loose validation
● doubter 4.2 MHz ± 0.6% 1.2 kB ± 0.01%
● Ajv 13.3 MHz ± 1.11% 356.4 B ± 0.01%
● zod 175.0 kHz ± 1.04% 11.0 kB ± 0.22%
● myzod 76.9 kHz ± 0.5% 2.8 kB ± 0.09%
● valita 3.1 MHz ± 0.5% 1.5 kB ± 0%
● valibot 3.0 MHz ± 0.53% 1.3 kB ± 0.02%
Strict validation
● doubter 2.9 MHz ± 0.5% 1.2 kB ± 0.01%
● Ajv 12.6 MHz ± 1.25% 331.6 B ± 0%
● zod 178.0 kHz ± 1.08% 10.8 kB ± 0.22%
● myzod 64.5 kHz ± 0.5% 2.8 kB ± 0.17%
● valita 3.0 MHz ± 0.5% 1.4 kB ± 0%
● valibot 3.0 MHz ± 0.5% 1.3 kB ± 0%
The table below highlights features that are unique to Doubter and its peers.
Doubter | Zod | Valita | |
---|---|---|---|
Shapes and parsing | |||
Static type inference | 🟢 | 🟢 | 🟢 |
Early return | 🟢 | 🔴 | 🔴 |
Custom issue codes | 🟢 | 🔴 | 🔴 |
Replace/allow/deny | 🟢 | 🔴 | 🔴 |
Exclude/not | 🟢 | 🔴 | 🔴 |
Discriminated unions | 🟢 | 🌕 1 | 🟢 |
Introspection at runtime | 🟢 | 🌕 2 | 🔴 |
Annotations/metadata | 🟢 | 🔴 | 🔴 |
Partial objects | 🟢 | 🟢 | 🟢 |
Deep partial | 🟢 | 🌕 3 | 🔴 |
Circular objects | 🟢 | 🔴 | 🔴 |
Derive sub-shapes | 🟢 | 🔴 | 🔴 |
Object key relationships | 🟢 | 🔴 | 🔴 |
Parsing context | 🟢 | 🔴 | 🔴 |
Async flow | |||
Async shapes | 🟢 | 🟢 | 🔴 |
Async refinements | 🟢 | 🟢 | 🔴 |
Async conversions | 🟢 | 🟢 | 🔴 |
Async checks | 🟢 | 🔴 | 🔴 |
Async alterations | 🟢 | 🔴 | 🔴 |
Check that shape is async | 🟢 | 🔴 | 🔴 |
Type coercion | |||
String | 🟢 | 🌕 4 | 🔴 |
Number | 🟢 | 🌕 4 | 🔴 |
Boolean | 🟢 | 🌕 4 | 🔴 |
BigInt | 🟢 | 🌕 4 | 🔴 |
Date | 🟢 | 🌕 4 | 🔴 |
Set | 🟢 | 🔴 | 🔴 |
Map | 🟢 | 🔴 | 🔴 |
Array | 🟢 | 🔴 | 🔴 |
Enum | 🟢 | 🔴 | 🔴 |
Const | 🟢 | 🔴 | 🔴 |
Other | |||
Plugin-centric | 🟢 | 🔴 | 🔴 |
Tree-shakeable | 🟢 | 🔴 | 🟢 |
-
Zod uses
z.union
for regular unions andz.discriminatedUnion
for discriminated unions, and discriminator key must be supplied manually as an argument. Doubter usesd.union
to describe both regular unions and discriminated unions, and discriminator key is detected automatically. -
Zod schemas are class instances so introspection is possible, but there's no way to get a list of types accepted by a schema.
-
Zod supports
deepPartial
for objects only. Doubter allows any shape to implementDeepPartialProtocol
and all shapes (except for primitives) support it out-of-the-box. -
Zod coerces input values using wrapper constructors. Doubter uses custom converters for type coercion. For example, with Zod
null
is coerced to"null"
, while with Doubternull
is coerced to an empty string.
d.any
returns a
Shape
instance.
An unconstrained value that is inferred as any
:
d.any();
// ⮕ Shape<any>
Use any
to create shapes that are unconstrained at runtime but constrained at compile time:
d.any<{ foo: string }>();
// ⮕ Shape<{ foo: string }>
Create a shape that is constrained by a narrowing predicate:
d.any((value): value is string => typeof value === 'string');
// ⮕ Shape<any, string>
d.array
returns an
ArrayShape
instance.
Constrains a value to be an array:
d.array();
// ⮕ Shape<any[]>
Restrict array element types:
d.array(d.number());
// ⮕ Shape<number[]>
Constrain the length of an array:
d.array(d.string()).min(1).max(10);
Limit both minimum and maximum array length at the same time:
d.array(d.string()).length(5);
Convert array values during parsing:
d.array(d.string().convert(parseFloat));
// ⮕ Shape<string[], number[]>
Make an array readonly:
d.array(d.string()).readonly();
// ⮕ Shape<string[], readonly string[]>
Iterables and array-like objects are converted to array via Array.from(value)
:
const shape = d.array(d.string()).coerce();
shape.parse(new Set(['John', 'Jack']));
// ⮕ ['John', 'Jack']
shape.parse({ 0: 'Bill', 1: 'Jill', length: 2 });
// ⮕ ['Bill', 'Jill']
Scalars, non-iterable and non-array-like objects are wrapped into an array:
shape.parse('Rose');
// ⮕ ['Rose']
d.bigint
returns a
BigIntShape
instance.
Constrains a value to be a bigint.
d.bigint();
// ⮕ Shape<bigint>
null
and undefined
are converted to 0:
const shape = d.bigint().coerce();
shape.parse(null);
// ⮕ BigInt(0)
Number, string and boolean values are converted via BigInt(value)
:
shape.parse('18588');
// ⮕ BigInt(18588)
shape.parse('Unexpected')
// ❌ ValidationError: type.bigint at /: Must be a bigint
Arrays with a single element are unwrapped and the value is coerced:
shape.parse([0xdea]);
// ⮕ BigInt(3562)
shape.parse([BigInt(1), BigInt(2)]);
// ❌ ValidationError: type.bigint at /: Must be a bigint
d.boolean
returns a
BooleanShape
instance.
Constrains a value to be boolean.
d.boolean();
// or
d.bool();
// ⮕ Shape<boolean>
null
, undefined
, 'false'
and 0 are converted to false
:
const shape = d.boolean().coerce();
shape.parse(null);
// ⮕ false
'true'
and 1 are converted to true
:
shape.parse('true');
// ⮕ true
shape.parse('yes');
// ❌ ValidationError: type.boolean at /: Must be a boolean
Arrays with a single element are unwrapped and the value is coerced:
shape.parse([undefined]);
// ⮕ false
shape.parse([0, 1]);
// ❌ ValidationError: type.boolean at /: Must be a boolean
d.const
returns a
ConstShape
instance.
Constrains a value to be an exact value:
d.const('Mars');
// ⮕ Shape<'Mars'>
There are shortcuts for null
, undefined
and nan
constants.
Consider using enum
if you want to check that an input is one of multiple values.
d.const
coerces an input depending on the type of the given constant value. const
uses
bigint, number, string,
boolean, or Date
coercion rules if given constant matches one of these
types. For example, if a given constant value is a string then the string coercion rules are
applied:
const shape1 = d.const(BigInt(42)).coerce();
shape1.parse([new String('42')]);
// ⮕ BigInt(42)
Constant values of other types aren't coerced, but d.const
would try to unwrap arrays with a single element to check
the element equals to the given constant:
const users = new Set(['Bill']);
const shape2 = d.const(users).coerce();
shape1.parse([users]);
// ⮕ users
shape1.parse(new Set(['Bill']));
// ❌ ValidationError: type.set at /: Must be equal to [object Set]
Both d.convert
and
d.convertAsync
return a
ConvertShape
instance.
Converts the input value:
const shape = d.convert(parseFloat);
// ⮕ Shape<any, number>
Use convert
in conjunction with shape piping:
shape.to(d.number().min(3).max(5));
Apply async conversions with convertAsync
:
d.convertAsync(value => Promise.resolve('Hello, ' + value));
// ⮕ Shape<any, string>
For more information, see Conversions section.
d.date
returns a
DateShape
instance.
Constrains a value to be a valid date.
d.date();
// ⮕ Shape<Date>
Constrain the minimum and maximum dates:
d.date().after('2003-03-12').before('2030-01-01');
Convert date to ISO string or timestamp:
d.date().toISOString().parse(new Date());
// ⮕ '2023-07-10T19:31:52.395Z'
d.date().toTimestamp().parse(new Date());
// ⮕ 1689017512395
Strings and numbers are converted via new Date(value)
and if an invalid date is produced then an issue is raised:
const shape = d.date().coerce();
shape.parse('2023-01-22');
// ⮕ Date
shape.parse('Yesterday');
// ❌ ValidationError: type.date at /: Must be a Date
Arrays with a single element are unwrapped and the value is coerced:
shape.parse([1674352106419]);
// ⮕ Date
shape.parse(['2021-12-03', '2023-01-22']);
// ❌ ValidationError: type.date at /: Must be a Date
d.enum
returns an
EnumShape
instance.
Constrains a value to be equal to one of predefined values:
d.enum(['Mars', 'Pluto', 'Jupiter']);
// ⮕ Shape<'Mars', 'Pluto', 'Jupiter'>
Or use a native TypeScript enum to limit possible values:
enum Planet {
MARS,
PLUTO,
JUPITER
}
d.enum(Planet);
// ⮕ Shape<Planet>
Or use
an object with a const
assertion:
const planets = {
MARS: 'Mars',
PLUTO: 'Pluto',
JUPITER: 'Jupiter'
} as const;
d.enum(plants);
// ⮕ Shape<'Mars', 'Pluto', 'Jupiter'>
If an enum is defined via a native TypeScript enum or via a const object, then enum element names are coerced to corresponding values:
enum Users {
JILL,
SARAH,
JAMES
}
const shape1 = d.enum(Users).coerce();
shape1.parse('SARAH');
// ⮕ 1
Arrays with a single element are unwrapped and the value is coerced:
shape1.parse(['JAMES']);
// ⮕ 2
shape1.parse([1]);
// ⮕ 1
shape1.parse([1, 2]);
// ❌ ValidationError: type.enum at /: Must be equal to one of 0,1,2
Other values follow const
coercion rules:
const shape2 = d.enum([1970, new Date(0)]).coerce();
shape2.parse(new String('1970'));
// ⮕ 1970
shape2.parse(0);
// ⮕ Date { Jan 1, 1970 }
d.function
returns a
FunctionShape
instance.
Constrain a value to be a function with the given signature.
A function that has no arguments and returns any
:
d.function()
// ⮕ Shape<() => any>
// or use a shorter alias
d.fn();
Provide an array of argument shapes:
d.fn([d.string(), d.number()]);
// ⮕ Shape<(arg1: string, arg2: number) => any>
Or provide a shape that constrains an array of arguments:
d.fn(d.array(d.string()));
// ⮕ Shape<(...args: string[]) => any>
Any shape that constrains an array type would do, you can even use a union:
d.fn(
d.or([
d.array(d.string()),
d.tuple([d.string(), d.number()])
])
);
// ⮕ Shape<(...args: string[] | [string, number]) => any>
To constrain the return value of a function shape, use the return
method.
d.fn().return(d.string());
// ⮕ Shape<() => string>
To constrain a value of this
:
d.fn().this(
d.object({ userId: d.string })
);
// ⮕ Shape<(this: { userId: string }) => any>
Function shapes check that an input value is a function:
const shape1 = d.fn();
shape1.parse(() => 42);
// ⮕ () => any
shape1.parse('Mars');
// ❌ ValidationError: type.function at /: Must be a function
By default, the input function is returned as-is during parsing. If you want a parsed function to be type-safe at
runtime use strict
method to ensure the parsed function signature.
const callbackShape = d.fn([d.string()])
.return(d.number().int())
.strict();
const callback = callbackShape.parse(value => parseInt(value));
// ⮕ (arg: string) => number
callback
ensures that the argument is string and the returned value is a number, or throws a ValidationError
if
types are invalid at runtime.
You can ensure a function signature type-safety at runtime.
Let's declare a function shape that takes two number arguments and returns a number as well:
const sumShape = d.fn([d.number(), d.number()]).return(d.number());
// ⮕ Shape<(arg1: number, arg2: number) => number>
Now let's ensure a signature of a particular function:
const sum = sumShape.ensure(
(arg1, arg2) => arg1 + arg2
);
// ⮕ (arg1: number, arg2: number) => number
sum(2, 3);
// ⮕ 5
sum
would throw a ValidationError
if the required signature is violated at runtime:
sum(2, '3');
// ❌ ValidationError: type.number at /arguments/1: Must be a number
sum(NaN, 2);
// ❌ ValidationError: type.number at /arguments/0: Must be an number
sum(1, 2, 3);
// ❌ ValidationError: array.max at /arguments: Must have the maximum length of 2
Using function shape you can parse this
and return values as well.
const callbackShape = d.fn([d.number().int()])
.this(d.array(d.string()))
.return(d.string());
// ⮕ Shape<(this: string[], arg: number) => string>
const callback = callbackShape.ensure(function (index) {
// 🟡 May be undefined if index is out of bounds
return this[index];
});
When called with a valid index, a string is returned:
callback.call(['Jill', 'Sarah'], 1);
// ⮕ 'Sarah'
But if an index is out of bounds, an error is thrown:
callback.call(['James', 'Bob'], 33);
// ❌ ValidationError: type.string at /return: Must be a string
An error is thrown if an argument isn't an integer:
callback.call(['Bill', 'Tess'], 3.14);
// ❌ ValidationError: number.int at /arguments/0: Must be an integer
Function shapes go well with type coercion:
const plus2Shape = d.fn([d.number().coerce()]).return(d.number());
// ⮕ Shape<(arg: number) => number>
const plus2 = plus2Shape.ensure(arg => arg + 2);
// ⮕ (arg: number) => number
While plus2
requires a single integer parameter, we can call it at runtime with a number-like string and get an
expected numeric result because an argument is coerced:
plus2('40');
// ⮕ 42
Here's a function shape that converts a string argument to a number:
const shape = d.fn([d.string().convert(parseFloat)]);
// ⮕ Shape<(arg: number) => any, (arg: string) => any>
Note that the input and output functions described by this shape have different signatures. Let's implement of this function:
function inputFunction(arg: number): any {
return arg + 2;
}
const outputFunction = shape.ensure(inputFunction);
// ⮕ (arg: string) => any
The pseudocode below demonstrates the inner workings of the outputFunction
:
function outputFunction(...inputArgs) {
const outputThis = shape.thisShape.parse(this);
const outputArgs = shape.argsShape.parse(inputArgs);
const inputResult = inputFunction.apply(outputThis, outputArgs);
const outputResult = shape.resultShape.parse(inputResult);
return outputResult;
}
d.instanceOf
returns an
InstanceShape
instance.
Constrains a value to be an object that is an instance of a class:
class User {
name?: string;
}
d.instanceOf(User);
// ⮕ Shape<User>
d.intersection
returns an
IntersectionShape
instance.
Creates a shape that checks that the input value conforms to all shapes.
d.intersection([
d.object({
name: d.string()
}),
d.object({
age: d.number()
})
]);
// ⮕ Shape<{ name: string } & { age: number }>
Or use a shorter alias and
:
d.and([
d.array(d.string()),
d.array(d.enum(['Peter', 'Paul']))
]);
// ⮕ Shape<string[] & Array<'Peter' | 'Paul'>>
When working with objects, extend objects instead of intersecting them whenever possible, since object shapes are more performant than object intersection shapes.
There's a logical difference between extended and intersected objects. Let's consider two shapes that both contain the same key:
const shape1 = d.object({
foo: d.string(),
bar: d.boolean(),
});
const shape2 = d.object({
// 🟡 Notice that the type of foo property in shape2 differs from shape1.
foo: d.number()
});
When you extend an object properties of the left object are overwritten with properties of the right object:
const shape = shape1.extend(shape2);
// ⮕ Shape<{ foo: number, bar: boolean }>
The intersection requires the input value to conform both shapes at the same time, it's not possible since there are no
values that can satisfy the string | number
type. So the type of property foo
becomes never
and no value would be
able to satisfy the resulting intersection shape.
const shape = d.and([shape1, shape2]);
// ⮕ Shape<{ foo: never, bar: boolean }>
d.lazy
returns a
LazyShape
instance.
With lazy
you can declare recursive shapes. To showcase how to use it, let's create a shape that validates JSON data:
type JSON =
| number
| string
| boolean
| null
| JSON[]
| { [key: string]: JSON };
const jsonShape: d.Shape<JSON> = d.lazy(() =>
d.or([
d.number(),
d.string(),
d.boolean(),
d.null(),
d.array(jsonShape),
d.record(jsonShape)
])
);
jsonShape.parse({ name: 'Jill' });
// ⮕ { name: 'Jill' }
jsonShape.parse({ tag: Symbol() });
// ❌ ValidationError: type.union at /tag: Must conform the union
Note that the JSON
type is defined explicitly, because it cannot be inferred from the shape which references itself
directly in its own initializer.
You can also use d.lazy
like this:
const jsonShape: d.Shape<JSON> = d.or([
d.number(),
d.string(),
d.boolean(),
d.null(),
d.array(d.lazy(() => jsonShape)),
d.record(d.lazy(() => jsonShape))
]);
Doubter supports circular object references out-of-the-box:
interface User {
friends: User[];
}
const hank: User = {
friends: []
};
// 🟡 The circular reference
hank.friends.push(hank);
const userShape1: d.Shape<User> = d.lazy(() =>
d.object({
friends: d.array(userShape1)
})
);
userShape1.parse(hank);
// ⮕ hank
userShape1.parse(hank).friends[0];
// ⮕ hank
You can replace circular references with a replacement value:
const userShape2: d.Shape<User> = d.lazy(() =>
d.object({
friends: d.array(userShape2)
})
).circular('Me and Myself');
userShape1.parse(hank);
// ⮕ hank
userShape2.parse(hank).friends[0];
// ⮕ 'Me and Myself'
You can provide a callback
that returns a value that is used as a replacement value for circular references. Or it can throw a
ValidationError
from the callback to indicate that circular references aren't allowed:
const userShape3: d.Shape<User> = d.lazy(() =>
d.object({
friends: d.array(userShape3)
})
).circular((input, options) => {
throw new d.ValidationError([{ code: 'kaputs' }]);
});
userShape1.parse(hank);
// ❌ ValidationError: kaputs at /friends/0
By default, Doubter neither parses nor validates an object if it was already seen, and returns such object as is. This
behaviour was chosen as the default for d.lazy
because otherwise the result would be ambiguous when conversions are
introduced.
interface Foo {
bar?: Foo;
}
const foo: Foo = {};
foo.bar = foo;
const fooShape: d.Shape<Foo, string> = d.lazy(() =>
d.object({
bar: fooShape.optional(),
})
).convert(output => {
// ⮕ {bar?: Foo} | {bar?: string}
return 'hello';
});
fooShape.parse(foo);
// ⮕ 'hello'
d.map
returns a
MapShape
instance.
Constrains an input to be a Map
instance:
d.map(d.string(), d.number());
// ⮕ Shape<Map<string, number>>
Mark a Map
as readonly:
d.map(d.string(), d.number()).readonly();
// ⮕ Shape<Map<string, number>, ReadonlyMap<string, number>>
Note
Marking a Map
as readonly, only affects type checking. At runtime, you would still be able to set and delete items.
Arrays, iterables and array-like objects that withhold entry-like elements (a tuple with two elements) are converted to
Map
entries via Array.from(value)
:
const shape = d.map(d.string(), d.number()).coerce();
shape.parse([
['Mars', 0.1199],
['Pluto', 5.3361]
]);
// ⮕ Map { 'Mars' → 0.1199, 'Pluto' → 5.3361 }
shape.parse(['Jake', 'Bill']);
// ❌ ValidationError: type.map at /: Must be a Map
Other objects are converted to an array of entries via new Map(Object.entries(value))
:
shape.parse({
Jake: 31,
Jill: 28
});
// ⮕ Map { 'Jake' → 31, 'Jill' → 28 }
d.nan
returns a
ConstShape
instance.
The shape that requires an input to be NaN
:
d.nan();
// ⮕ Shape<number>
If you want to constrain a number and allow NaN
values, use number
:
d.number().nan();
// ⮕ Shape<number>
d.never
returns a
NeverShape
instance.
The shape that always raises a validation issue regardless of an input value:
d.never();
// ⮕ Shape<never>
d.not
returns an
ExcludeShape
instance.
The shape that allows any value that doesn't conform the negated shape:
const shape = d.not(d.string())
// ⮕ Shape<any>
shape.parse(42);
// ⮕ 42
shape.parse('Bill');
// ❌ ValidationError: any.exclude at /: Must not conform the excluded shape
More about exclusions in the Exclude a shape section.
d.null
returns a
ConstShape
instance.
The shape that requires an input to be null
:
d.null();
// ⮕ Shape<null>
d.number
returns a
NumberShape
instance.
The shape that requires an input to be a number.
d.number();
// ⮕ Shape<number>
Allow NaN
input values:
d.number().nan();
// ⮕ Shape<number>
Replace NaN
with a default value:
d.number().nan(0).parse(NaN);
// ⮕ 0
Limit the allowed range:
// The number must be greater than 5 and less then or equal to 10
d.number().gt(0.5).lte(2.5)
// ⮕ Shape<number>
Constrain a number to be a multiple of a divisor:
// Number must be divisible by 5 without a remainder
d.number().multipleOf(5);
Constrain the number to be an integer:
d.number().int();
Constrain the input to be a finite number (not NaN
, Infinity
or -Infinity
):
d.number().finite();
null
and undefined
values are converted to 0:
const shape = d.number().coerce();
shape.parse(null);
// ⮕ 0
Strings, boolean values and Date
objects are converted using +value
:
shape.parse('42');
// ⮕ 42
shape.parse('seventeen');
// ❌ ValidationError: type.number at /: Must be a number
Arrays with a single element are unwrapped and the value is coerced:
shape.parse([new Date('2023-01-22')]);
// ⮕ 1674345600000
shape.parse([1997, 1998]);
// ❌ ValidationError: type.number at /: Must be a number
d.object
returns an
ObjectShape
instance.
Constrains a value to be an object with a set of properties:
d.object({
name: d.string(),
age: d.number()
});
// ⮕ Shape<{ name: string, age: number }>
Make an object readonly:
d.object({
name: d.string()
}).readonly();
// ⮕ Shape<{ name: string }, { readonly name: string }>
If the inferred type of the property shape is a union with undefined
then the property becomes optional:
d.object({
name: d.string().optional(),
age: d.number()
});
// ⮕ Shape<{ name?: string | undefined, age: number }>
Or you can define optional properties as a union with d.undefined
:
d.object({
name: d.or([d.string(), d.undefined()]),
});
// ⮕ Shape<{ name?: string | undefined }>
If the conversion result extends undefined
then the output property becomes optional:
d.object({
name: d.string().convert(
value => value !== 'Google' ? value : undefined
),
});
// ⮕ Shape<{ name: string }, { name?: string | undefined }>
Add an index signature to the object type, so all properties that aren't listed explicitly are validated with the rest shape:
const shape = d.object({
foo: d.string(),
bar: d.number()
});
// ⮕ Shape<{ foo: string, bar: number }>
const restShape = d.or([
d.string(),
d.number()
]);
// ⮕ Shape<string | number>
shape.rest(restShape);
// ⮕ Shape<{ foo: string, bar: number, [key: string]: string | number }>
Unlike an index signature in TypeScript, a rest shape is applied only to keys that aren't explicitly specified among object property shapes.
Keys that aren't defined explicitly can be handled in several ways:
- constrained by the rest shape;
- stripped;
- preserved as is, this is the default behavior;
- prohibited.
Force an object to have only known keys. If an unknown key is met, a validation issue is raised.
d.object({
foo: d.string(),
bar: d.number()
}).exact();
Strip unknown keys, so the object is cloned if an unknown key is met, and only known keys are preserved.
d.object({
foo: d.string(),
bar: d.number()
}).strip();
Derive the new shape and override the strategy for unknown keys:
const shape = d.object({ foo: d.string() }).exact();
// Unknonwn keys are now preserved
shape.preserve();
Picking keys from an object creates the new shape that contains only listed keys:
const shape1 = d.object({
foo: d.string(),
bar: d.number()
});
const shape2 = shape1.pick(['foo']);
// ⮕ Shape<{ foo: string }>
Omitting keys of an object creates the new shape that contains all keys except listed ones:
const shape = d.object({
foo: d.string(),
bar: d.number()
});
shape.omit(['foo']);
// ⮕ Shape<{ bar: number }>
Add new properties to the object shape:
const shape = d.object({
name: d.string()
});
shape.extend({
age: d.number()
});
// ⮕ Shape<{ name: string, age: number }>
Merging object shapes preserves the index signature of the left-hand shape:
const fooShape = d.object({
foo: d.string()
}).rest(d.or([d.string(), d.number()]));
const barShape = d.object({
bar: d.number()
});
fooShape.extend(barShape);
// ⮕ Shape<{ foo: string, bar: number, [key: string]: string | number }>
Object properties are optional if their type extends undefined
. Derive an object shape that would have its properties
all marked as optional:
const shape1 = d.object({
foo: d.string(),
bar: d.number()
});
shape1.partial()
// ⮕ Shape<{ foo?: string | undefined, bar?: number | undefined }>
Specify which fields should be marked as optional:
const shape2 = d.object({
foo: d.string(),
bar: d.number()
});
shape2.partial(['foo'])
// ⮕ Shape<{ foo?: string | undefined, bar: number }>
In the same way, properties that are optional can be made required:
const shape3 = d.object({
foo: d.string().optional(),
bar: d.number()
});
shape3.required(['foo'])
// ⮕ Shape<{ foo: string, bar: number }>
Note that required
would force the value of both input and output to be non-undefined
.
Derive a shape that constrains keys of an object:
const shape = d.object({
name: d.string(),
age: d.number()
});
shape.keysShape;
// ⮕ Shape<'name' | 'age'>
Declare relationships between object keys using
allKeys
notAllKeys
orKeys
xorKeys
oxorKeys
const shape = d.object({
foo: d.string(),
bar: d.number(),
baz: d.boolean()
})
.partial()
.xorKeys(['foo', 'bar']);
shape.parse({ foo: 'Mars', bar: 42 });
// ❌ ValidationError: object.xorKeys at /: Must contain exactly one key: foo,bar
d.promise
returns a
PromiseShape
instance.
The shape that checks that an input is an instance of Promise
.
d.promise();
// ⮕ Shape<Promise<any>>
Constrain a resolved value of a promise:
d.promise(d.string());
// ⮕ Shape<Promise<string>>
Convert a value inside a promise:
const shape = d.promise(
d.string().convert(parseFloat)
);
// ⮕ Shape<Promise<string>, Promise<number>>
All values are converted to a promise by wrapping it in Promise.resolve()
:
const shape = d.promise(d.number()).coerce();
shape.parseAsync(42);
// ⮕ Promise<number>
d.record
returns a
RecordShape
instance.
Constrain keys and values of a dictionary-like object:
d.record(d.number())
// ⮕ Shape<Record<string, number>>
Constrain both keys and values of a dictionary-like object:
d.record(d.string(), d.number())
// ⮕ Shape<Record<string, number>>
Pass any shape that extends Shape<string>
as a key constraint:
const keysShape = d.enum(['foo', 'bar']);
// ⮕ Shape<'foo' | 'bar'>
d.record(keysShape, d.number());
// ⮕ Shape<Record<'foo' | 'bar', number>>
Make a record readonly:
d.record(d.number()).readonly();
// ⮕ Shape<Record<string, number>, Readonly<Record<string, number>>>
d.set
returns a
SetShape
instance.
Constrains an input to be a Set
instance:
d.set(d.number());
// ⮕ Shape<Set<number>>
Constrain the size of a Set
:
d.set(d.string()).min(1).max(10);
Limit both minimum and maximum size at the same time:
d.set(d.string()).size(5);
Mark a Set
as readonly:
d.set(d.string()).readonly();
// ⮕ Shape<Set<string>, ReadonlySet<string>>
Note
Marking a Set
as readonly, only affects type checking. At runtime, you would still be able to add and delete items.
Arrays, iterables and array-like objects converted to Set
values via Array.from(value)
:
const shape = d.set(d.string()).coerce();
shape.parse(['Boris', 'K']);
// ⮕ Set { 'Boris', 'K' }
Scalars, non-iterable and non-array-like objects are wrapped into an array:
shape.parse('J');
// ⮕ Set { 'J' }
d.string
returns a
StringShape
instance.
Constrains a value to be string.
d.string();
// ⮕ Shape<string>
Constrain the string length limits:
d.string().min(1).max(10);
Limit both minimum and maximum string length at the same time:
d.string().length(5);
Constrain a string with a regular expression:
d.string().regex(/foo|bar/);
null
and undefined
are converted to an empty string:
const shape = d.string().coerce();
shape.parse(null);
// ⮕ ''
Finite numbers, boolean and bigint values are converted via String(value)
:
shape.parse(BigInt(2398955));
// ⮕ '2398955'
shape.parse(8080);
// ⮕ '8080'
shape.parse(-Infinity);
// ❌ ValidationError: type.string at /: Must be a string
Valid dates are converted to an ISO formatted string:
shape.parse(new Date(1674352106419));
// ⮕ '2023-01-22T01:48:26.419Z'
shape.parse(new Date(NaN));
// ❌ ValidationError: type.string at /: Must be a string
Arrays with a single element are unwrapped and the value is coerced:
shape.parse([undefined]);
// ⮕ ''
shape.parse(['Jill', 'Sarah']);
// ❌ ValidationError: type.string at /: Must be a string
d.symbol
returns a
SymbolShape
instance.
The shape that constrains a value to be an arbitrary symbol.
d.symbol();
// ⮕ Shape<symbol>
To constrain an input to an exact symbol, use const
:
const TAG = Symbol('tag');
d.const(TAG);
// ⮕ Shape<typeof TAG>
Or use an enum
to allow several exact symbols:
const FOO = Symbol('foo');
const BAR = Symbol('bar');
d.enum([FOO, BAR]);
// ⮕ Shape<typeof FOO | typeof BAR>
d.tuple
returns an
ArrayShape
instance.
Constrains a value to be a tuple where elements at particular positions have concrete types:
d.tuple([d.string(), d.number()]);
// ⮕ Shape<[string, number]>
Specify a rest tuple elements:
d.tuple([d.string(), d.number()], d.boolean());
// ⮕ Shape<[string, number, ...boolean]>
// Or
d.tuple([d.string(), d.number()]).rest(d.boolean());
// ⮕ Shape<[string, number, ...boolean]>
Make a tuple readonly:
d.tuple([d.string()]).readonly();
// ⮕ Shape<[string], readonly [string]>
Tuples follow array type coercion rules.
d.undefined
returns a
ConstShape
instance.
The shape that requires an input to be undefined
:
d.undefined();
// ⮕ Shape<undefined>
d.union
returns a
UnionShape
instance.
A constraint that allows a value to be one of the given types:
d.union([d.string(), d.number()]);
// ⮕ Shape<string | number>
Use a shorter alias or
:
d.or([d.string(), d.number()]);
A discriminated union is a union of object shapes that all share a particular key.
Doubter automatically applies various performance optimizations to union shapes and discriminated union detection is one of them. As an example, let's create a discriminated union of objects representing various business types.
Sole entrepreneur goes first:
const entrepreneurShape = d.object({
bisinessType: d.const('entrepreneur'),
name: d.string(),
age: d.number().int().gte(18)
});
// ⮕ Shape<{ type: 'entrepreneur', name: string, age: number }>
We're going to use bisinessType
property as the discriminator in our union. Now let's define a shape for a company:
const companyShape = d.object({
businessType: d.or([
d.const('llc'),
d.enum(['corporation', 'partnership'])
]),
headcount: d.number().int().positive()
});
// ⮕ Shape<{ type: 'llc' | 'corporation' | 'partneership', headcount: number }>
Notice that we declared businessType
as a composite shape. This would work just fine until shape restricts its input
to a set of literal values.
The final step is to define a discriminated union shape:
const businessShape = d.union([entrepreneurShape, companyShape]);
union
would detect that all object shapes in the union have the businessType
property with distinct values and would
enable a discriminated union optimization.
Discriminated unions raise fewer issues because only one shape from the union can be applied to an input:
businessType.parse({
businessType: 'corporation',
headcount: 0
});
// ❌ ValidationError: number.gte at /headcount: Must be greater than 0
If there are multiple shapes in the union that have raised issues during parsing, then union returns a grouping issue.
const shape = d.or([
d.object({
name: d.string()
}),
d.object({
age: d.number()
})
]);
// ⮕ Shape<{ name: string } | { age: number }>
shape.try({ name: 47, age: null });
The result of try
would contain a grouping issue:
{
code: 'type.union',
path: [],
input: {
name: 47,
age: null
},
message: 'Must conform the union',
param: {
inputs: [Type.OBJECT],
issueGroups: [
[
{
code: 'type.string',
path: ['name'],
input: 47,
message: 'Must be a string'
}
],
[
{
code: 'type.number',
path: ['age'],
input: null,
message: 'Must be a number'
}
]
]
}
}
inputs
-
An array of all input types and literal values that the union accepts.
issueGroups
-
An array of issue groups where each group contains issues raised by a separate shape in the union; or
null
.Union checks the input only against shapes that accept the input value type. If there were no shapes in the union that accept the provided input value type, then
issueGroups
isnull
. For example, if you have anumber | string
union and parse a boolean value, there's no shape that acceptsboolean
input type. So the raised union issue would haveissueGroups
set tonull
.path
of issues inissueGroups
is relative to the grouping issue.
When union detects that only one of its shapes accepts the provided input value then issues produced by this shape are returned as is:
d.or([d.number(), d.string().min(6)]).try('Okay')
In this example, only d.string
can parse the 'Okay'
input value, so the result of try
would contain a single
string-related issue:
{
code: 'string.min',
path: [],
input: 'Okay',
message: 'Must have the minimum length of 6',
param: 6
}
This behaviour is applied to discriminated unions as well.
d.unknown
returns a
Shape
instance.
An unconstrained value that is inferred as unknown
:
d.unknown();
// ⮕ Shape<unknown>
d.void
returns a
ConstShape
instance.
The shape that requires an input to be undefined
that is typed as void
:
d.void();
// ⮕ Shape<void>
Let's define a shape that describes the query with name
and age
params:
const queryShape = d
.object({
name: d.string(),
age: d.number().int().nonNegative().coerce().catch()
})
.partial();
// ⮕ Shape<{ name?: string | undefined, age?: number | undefined }>
🎯 Key takeaways
-
Query params are strings. Since
name
is constrained byd.string
it doesn't require additional attention. On the other hand,age
is an integer, so type coercion must be enabled. -
We also added
catch
, so whenage
cannot be parsed as a positive integer, Doubter returnsundefined
instead of raising a validation issue. -
The object shape is marked as partial, so absence of any query param won't raise a validation issue. You can mark individual params as optional and provide a default value.
Now, let's parse the query string with qs and then apply our shape:
import qs from 'qs';
const query = queryShape.parse(qs.parse('name=Frodo&age=50'));
// ⮕ { name: 'Frodo', age: 50 }
age
is set to undefined
if it is invalid:
queryShape.parse(qs.parse('age=-33'));
// ⮕ { age: undefined }
If you're developing an app that consumes environment variables you most likely want to validate them.
const envShape = d
.object({
NODE_ENV: d.enum(['test', 'production']),
HELLO_DATE: d.date().coerce().optional(),
})
.strip();
🎯 Key takeaways
-
Since env variables are strings, we should enable type coercion to convert the value of
HELLO_DATE
to aDate
instance. -
NODE_ENV
is the required env variable, whileHELLO_DATE
is optional. IfHELLO_DATE
is provided and cannot be coerced to a date, a validation error would be raised. -
Unknown env variables are stripped, so they won't be visible inside the app. This prevents an accidental usage of an unvalidated env variable.
const env = envShape.parse(process.env);
// ⮕ { NODE_ENV: 'test' | 'production', HELLO_DATE?: Date }
If you're developing a console app you may want to validate arguments passed via CLI. For example, lets write an app that processes the following CLI parameters:
node app.js --name Bill --age 42
First, install argcat, and use it to convert an array of CLI arguments to an object:
import { parseArgs } from 'argcat';
const args = parseArgs(process.argv.slice(2));
// ⮕ { '': [], name: ['Bill'], age: ['42'] }
Now let's define the shape of the parsed object:
const optionsShape = d
.object({
name: d.string().coerce(),
age: d.number().int().nonNegative().coerce(),
})
.strip();
strip
removes all unknown keys from
an object. It is used here to prevent unexpected arguments to be accessible inside the app. You may want to throw an
error if unknown keys are detected or ignore them. Refer to Unknown keys section to find out how this
can be done.
Parse CLI arguments using optionsShape
with enabled type coercion:
const options = optionsShape.parse(args);
// ⮕ { name: 'Bill', age: 42 }
localStorage
is a key-value storage which
allows persistence of string keys and string values on the client. Let's write two functions that can read and write
JSON objects from and to localStorage
in a type-safe manner.
First lets define a shape of the data stored in the localStorage
. In this example localStorage
would allow only
one key 'user'
that would correspond to an object with name
and age
properties:
import * as d from 'doubter';
const userShape = d.object({
name: d.string(),
age: d.number().int().positive()
});
const localStorageItemsShape = d.object({
user: userShape
});
Let's infer a type of the data in the localStorage
:
type LocalStorageItems = d.Input<typeof localStorageItemsShape>;
You can read more about d.Input
and d.Output
in Static type inference section. In this
example, we don't have any alterations or conversions, so the localStorageItemsShape
has the same input and output.
Now it's time to create a function that reads items in a type-safe manner:
function getItem<K extends keyof LocalStorageItems>(key: K): LocalStorageItems[K] | null {
const valueShape = localStorageItemsShape.at(key);
const value = localStorage.getItem(key);
if (valueShape === null) {
throw new Error('Unknown key: ' + key);
}
if (value === null) {
return null;
}
return valueShape.parse(JSON.parse(value));
}
Read more about Shape.at
method in
the Nested shapes section. The same approach can be taken to implement writes:
function setItem<K extends keyof LocalStorageItems>(key: K, value: LocalStorageItems[K]): void {
const valueShape = localStorageItemsShape.at(key);
if (valueShape === null) {
throw new Error('Unknown key: ' + key);
}
localStorage.setItem(key, JSON.stringify(valueShape.parse(value)));
}
Note that we prevent writes of the unknown keys as well as reads. Now, let's use those functions:
setItem('user', { name: 'John', age: 42 });
getItem('user');
// ⮕ { name: 'John', age: 42 }
setItem('user', { name: 'Bill', age: -100 });
// ❌ ValidationError: number.gte at /: Must be greater than 0
getItem('account');
// ❌ Error: Unknown key: account
First, create a shape that describes the key transformation. In this example we are going to convert the enumeration of keys to an uppercase string:
const keysShape = d.enum(['foo', 'bar']).convert(
value => value.toUpperCase() as 'FOO' | 'BAR'
);
// ⮕ Shape<'foo' | 'bar', 'FOO' | 'BAR'>
Then, create a d.record
shape that constrains keys and values or a dictionary-like object:
const shape = d.record(keysShape, d.number());
// ⮕ Shape<Record<'foo' | 'bar', number>, Record<'FOO' | 'BAR', number>>
Parse the input object, the output would be a new object with transformed keys:
shape.parse({ foo: 1, bar: 2 });
// ⮕ { FOO: 1, BAR: 2 }
If you need to apply a different shape depending on an input value, you can use
convert
.
const stringShape = d.string().min(5);
const numberShape = d.number().positive();
const shape = d.convert(value => {
if (typeof value === 'string') {
return stringShape.parse(value)
} else {
return numberShape.parse(value);
}
});
parse
would throw a ValidationError
that is captured by the enclosing convert
.
shape.parse('Pluto');
// ⮕ 'Pluto'
shape.parse('Mars');
// ❌ ValidationError: string.min at /: Must have the minimum length of 5
shape.parse(42);
// ⮕ 42
shape.parse(-273.15);
// ❌ ValidationError: number.gte at /: Must be greater than 0
❤️