-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
136 lines (110 loc) · 4.47 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import random
from glob import glob
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import pytorch_lightning as pl
from utils import get_alphabet_map
default_transform = transforms.Compose(
[
transforms.Resize((40, 25)),
transforms.RandomGrayscale(p=0.2),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
transforms.GaussianBlur(3, sigma=(0.1, 2.0)),
transforms.RandomAdjustSharpness(p=0.2, sharpness_factor=0.5),
transforms.ToTensor(),
transforms.Normalize(
[0.62784992, 0.62404451, 0.60055435], [0.12606049, 0.11872653, 0.12450065]
),
]
)
class BrailleDataset(Dataset):
def __init__(self, transform=default_transform):
self.kaggle_path = "./dataset/KaggleDataset/cropped_images"
self.angelina_path = "./dataset/AngelinaDataset/cropped_images"
self.dsbi_path = "./dataset/DSBI/cropped_images"
self.alphabet_map = get_alphabet_map(path="./src/utils/alphabet_map.json")
self.transform = transform
self.kaggle_files = glob(self.kaggle_path + "/*.jpg")
self.angelina_files = glob(self.angelina_path + "/*.jpg")
self.dsbi_files = glob(self.dsbi_path + "/*.jpg")
self.files = self.kaggle_files + self.angelina_files + self.dsbi_files
self.kaggle_labels = [self.get_kaggle_label(f) for f in self.kaggle_files]
self.angelina_labels = [self.get_angelina_label(f) for f in self.angelina_files]
self.dsbi_labels = [self.get_dsbi_label(f) for f in self.dsbi_files]
self.labels = self.kaggle_labels + self.angelina_labels + self.dsbi_labels
def __len__(self):
return len(self.kaggle_files) + len(self.angelina_files) + len(self.dsbi_files)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = self.files[idx]
image = Image.open(img_name)
label = self.labels[idx]
if self.transform:
image = self.transform(image)
# # get random probability
p_hflip = random.random()
p_vflip = random.random()
# vertical flip
if p_vflip > 0.5:
image = torch.flip(image, [1])
# half the label
half = label[: len(label) // 2]
another_half = label[len(label) // 2 :]
label = half[::-1] + another_half[::-1]
# horizontal flip
if p_hflip > 0.5:
image = torch.flip(image, [2])
# reverse the label
half = label[: len(label) // 2]
another_half = label[len(label) // 2 :]
label = another_half + half
return image, torch.tensor(label)
def get_kaggle_label(self, file):
file = file.split("/")[-1]
file = file.split(".")[0]
file = file[0]
label = self.alphabet_map[file]
label = [int(c) for c in label]
return label
def get_angelina_label(self, file):
basename = os.path.basename(file)
basename = basename.split("_")[-1]
basename = basename.split(".")[0]
label = [int(c) for c in basename]
return label
def get_dsbi_label(self, file):
basename = os.path.basename(file)
basename = basename.split("_")[-1]
basename = basename.split(".")[0]
label = [int(c) for c in basename]
return label
class BrailleDataModule(pl.LightningDataModule):
def __init__(self, dataset=BrailleDataset(), batch_size=256, num_workers=4):
super().__init__()
self.dataset = dataset
self.batch_size = batch_size
self.num_workers = num_workers
train_size = int(0.80 * len(dataset))
val_size = int(0.1 * len(dataset))
test_size = len(dataset) - train_size - val_size
(
self.train_dataset,
self.val_dataset,
self.test_dataset,
) = torch.utils.data.random_split(dataset, [train_size, val_size, test_size])
def train_dataloader(self):
return DataLoader(
self.train_dataset, batch_size=self.batch_size, num_workers=self.num_workers
)
def val_dataloader(self):
return DataLoader(
self.val_dataset, batch_size=self.batch_size, num_workers=self.num_workers
)
def test_dataloader(self):
return DataLoader(
self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers
)