Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds FromBiapplicative newtype and deriving via instances. #43

Merged
merged 2 commits into from
Jan 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Revision history for monoidal-functors

## Upcoming
* Adds `Bifunctor.Monoidal` instances for `Biapplicative`.
* Adds common infix operators for Semigroupal.
* Adds `Data.Functor.Monoidal.Specialized` combinators module.
* Adds `Biapplicative` operations to `Data.Bifunctor.Monoidal.Specialized`.
Expand Down
6 changes: 3 additions & 3 deletions monoidal-functors.cabal
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,9 @@ extra-source-files: CHANGELOG.md
description: A typeclass hierarchy for monoidal functors.
tested-with: GHC == 8.10.7
, GHC == 9.0.2
, GHC == 9.2.4
, GHC == 9.4.5
, GHC == 9.6.2
, GHC == 9.2.8
, GHC == 9.4.8
, GHC == 9.6.3
source-repository head
type: git
location: https://github.com/solomon-b/monoidal-functors
Expand Down
152 changes: 125 additions & 27 deletions src/Data/Bifunctor/Monoidal.hs
Original file line number Diff line number Diff line change
Expand Up @@ -14,29 +14,38 @@ module Data.Bifunctor.Monoidal
Monoidal,

-- * Newtypes for Deriving Via
FromBiapplicative (..),
StrongCategory (..),
)
where

--------------------------------------------------------------------------------

import Control.Applicative (Alternative (..), Applicative (..), pure, (<$>))
import Control.Applicative (Alternative (..), Applicative (..), Const, pure, (<$>))
import Control.Arrow (Kleisli (..))
import Control.Category (Category (..))
import Control.Category.Cartesian (Cocartesian (..), Semicartesian (..))
import Control.Category.Cartesian (Cocartesian (..))
import Control.Category.Tensor (Associative, Iso (..), Tensor (..))
import Control.Monad (Functor (..), Monad)
import Data.Biapplicative (Biapplicative (..), Bifunctor (..))
import Data.Bifunctor.Biap (Biap)
import Data.Bifunctor.Biff (Biff)
import Data.Bifunctor.Clown (Clown)
import Data.Bifunctor.Flip (Flip)
import Data.Bifunctor.Joker (Joker (..))
import Data.Bifunctor.Product (Product)
import Data.Bifunctor.Tannen (Tannen)
import Data.Bifunctor.Wrapped (WrappedBifunctor)
import Data.Either (Either, either)
import Data.Function (const, ($))
import Data.Profunctor (Forget (..), Profunctor (..), Star (..), Strong (..))
import Data.Semigroup (Arg)
import Data.Semigroupoid (Semigroupoid (..))
import Data.Tagged (Tagged)
import Data.These (These (..), these)
import Data.Tuple (fst, snd, uncurry)
import Data.Void (Void, absurd)
import Prelude (Either (..), curry)
import Prelude (Either (..), Monoid, curry)

--------------------------------------------------------------------------------

Expand Down Expand Up @@ -77,14 +86,51 @@ class (Associative cat t1, Associative cat t2, Associative cat to) => Semigroupa
-- ("True",True)
combine :: cat (to (f x y) (f x' y')) (f (t1 x x') (t2 y y'))

newtype FromBiapplicative p a b = FromBiapplicative (p a b)
deriving newtype (Functor, Bifunctor, Biapplicative)

instance (Biapplicative p) => Semigroupal (->) (,) (,) (,) (FromBiapplicative p) where
combine :: (FromBiapplicative p x y, FromBiapplicative p x' y') -> FromBiapplicative p (x, x') (y, y')
combine = uncurry $ biliftA2 (,) (,)

deriving via FromBiapplicative (,) instance Semigroupal (->) (,) (,) (,) (,)

deriving via FromBiapplicative ((,,) x) instance (Monoid x) => Semigroupal (->) (,) (,) (,) ((,,) x)

deriving via FromBiapplicative ((,,,) x y) instance (Monoid x, Monoid y) => Semigroupal (->) (,) (,) (,) ((,,,) x y)

deriving via FromBiapplicative ((,,,,) x y z) instance (Monoid x, Monoid y, Monoid z) => Semigroupal (->) (,) (,) (,) ((,,,,) x y z)

deriving via FromBiapplicative ((,,,,,) x y z w) instance (Monoid x, Monoid y, Monoid z, Monoid w) => Semigroupal (->) (,) (,) (,) ((,,,,,) x y z w)

deriving via FromBiapplicative ((,,,,,,) x y z w v) instance (Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Semigroupal (->) (,) (,) (,) ((,,,,,,) x y z w v)

deriving via FromBiapplicative Arg instance Semigroupal (->) (,) (,) (,) Arg

deriving via FromBiapplicative Const instance Semigroupal (->) (,) (,) (,) Const

deriving via FromBiapplicative (Biap p) instance (Biapplicative p) => Semigroupal (->) (,) (,) (,) (Biap p)

deriving via FromBiapplicative Tagged instance Semigroupal (->) (,) (,) (,) Tagged

deriving via FromBiapplicative (Clown f) instance (Applicative f) => Semigroupal (->) (,) (,) (,) (Clown f)

deriving via FromBiapplicative (Flip p) instance (Biapplicative p) => Semigroupal (->) (,) (,) (,) (Flip p)

deriving via FromBiapplicative (Joker g) instance (Applicative g) => Semigroupal (->) (,) (,) (,) (Joker g)

deriving via FromBiapplicative (WrappedBifunctor p) instance (Biapplicative p) => Semigroupal (->) (,) (,) (,) (WrappedBifunctor p)

deriving via FromBiapplicative (Product f g) instance (Biapplicative f, Biapplicative g) => Semigroupal (->) (,) (,) (,) (Product f g)

deriving via FromBiapplicative (Tannen f p) instance (Applicative f, Biapplicative p) => Semigroupal (->) (,) (,) (,) (Tannen f p)

deriving via FromBiapplicative (Biff p f g) instance (Applicative f, Applicative g, Biapplicative p) => Semigroupal (->) (,) (,) (,) (Biff p f g)

instance (Profunctor p) => Semigroupal (->) (,) Either Either p where
combine :: Either (p x y) (p x' y') -> p (x, x') (Either y y')
combine = either (dimap fst Left) (dimap snd Right)

instance Semigroupal (->) (,) (,) (,) (,) where
combine :: ((x, y), (x', y')) -> ((x, x'), (y, y'))
combine ((x, y), (x', y')) = ((x, x'), (y, y'))

-- NOTE: This version could be used for a more general abstraction
-- of products in a category:
-- combine =
Expand Down Expand Up @@ -124,10 +170,6 @@ instance Semigroupal (->) Either Either (,) (->) where
combine :: (x -> y, x' -> y') -> Either x x' -> Either y y'
combine fs = either (Left . fst fs) (Right . snd fs)

instance (Applicative f) => Semigroupal (->) (,) (,) (,) (Joker f) where
combine :: (Joker f x y, Joker f x' y') -> Joker f (x, x') (y, y')
combine = uncurry $ biliftA2 (,) (,)

instance (Alternative f) => Semigroupal (->) Either Either (,) (Joker f) where
combine :: (Joker f x y, Joker f x' y') -> Joker f (Either x x') (Either y y')
combine = uncurry $ biliftA2 (\_ x' -> Right x') (\_ y' -> Right y')
Expand All @@ -136,10 +178,6 @@ instance (Functor f) => Semigroupal (->) Either Either Either (Joker f) where
combine :: Either (Joker f x y) (Joker f x' y') -> Joker f (Either x x') (Either y y')
combine = either (Joker . fmap Left . runJoker) (Joker . fmap Right . runJoker)

instance (Applicative f) => Semigroupal (->) (,) (,) (,) (Clown f) where
combine :: (Clown f x y, Clown f x' y') -> Clown f (x, x') (y, y')
combine = uncurry $ biliftA2 (,) (,)

instance (Alternative f) => Semigroupal (->) Either Either (,) (Clown f) where
combine :: (Clown f x y, Clown f x' y') -> Clown f (Either x x') (Either y y')
combine = uncurry $ biliftA2 (\_ x' -> Right x') (\_ y' -> Right y')
Expand Down Expand Up @@ -266,14 +304,48 @@ class Unital cat i1 i2 io f where
-- Right ()
introduce :: cat io (f i1 i2)

instance (Biapplicative p) => Unital (->) () () () (FromBiapplicative p) where
introduce :: () -> FromBiapplicative p () ()
introduce () = bipure () ()

deriving via FromBiapplicative (,) instance Unital (->) () () () (,)

deriving via FromBiapplicative ((,,) x) instance (Monoid x) => Unital (->) () () () ((,,) x)

deriving via FromBiapplicative ((,,,) x y) instance (Monoid x, Monoid y) => Unital (->) () () () ((,,,) x y)

deriving via FromBiapplicative ((,,,,) x y z) instance (Monoid x, Monoid y, Monoid z) => Unital (->) () () () ((,,,,) x y z)

deriving via FromBiapplicative ((,,,,,) x y z w) instance (Monoid x, Monoid y, Monoid z, Monoid w) => Unital (->) () () () ((,,,,,) x y z w)

deriving via FromBiapplicative ((,,,,,,) x y z w v) instance (Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Unital (->) () () () ((,,,,,,) x y z w v)

deriving via FromBiapplicative Arg instance Unital (->) () () () Arg

deriving via FromBiapplicative Const instance Unital (->) () () () Const

deriving via FromBiapplicative (Biap p) instance (Biapplicative p) => Unital (->) () () () (Biap p)

deriving via FromBiapplicative Tagged instance Unital (->) () () () Tagged

deriving via FromBiapplicative (Clown f) instance (Applicative f) => Unital (->) () () () (Clown f)

deriving via FromBiapplicative (Flip p) instance (Biapplicative p) => Unital (->) () () () (Flip p)

deriving via FromBiapplicative (Joker g) instance (Applicative g) => Unital (->) () () () (Joker g)

deriving via FromBiapplicative (WrappedBifunctor p) instance (Biapplicative p) => Unital (->) () () () (WrappedBifunctor p)

deriving via FromBiapplicative (Product f g) instance (Biapplicative f, Biapplicative g) => Unital (->) () () () (Product f g)

deriving via FromBiapplicative (Tannen f p) instance (Applicative f, Biapplicative p) => Unital (->) () () () (Tannen f p)

deriving via FromBiapplicative (Biff p f g) instance (Applicative f, Applicative g, Biapplicative p) => Unital (->) () () () (Biff p f g)

instance (Profunctor p, Category p) => Unital (->) () () () (StrongCategory p) where
introduce :: () -> StrongCategory p () ()
introduce () = StrongCategory id

instance Unital (->) () () () (,) where
introduce :: () -> ((), ())
introduce = split

instance Unital (->) Void Void Void (,) where
introduce :: Void -> (Void, Void)
introduce = spawn
Expand All @@ -298,10 +370,6 @@ instance (Unital (->) Void Void () (->)) where
introduce :: () -> Void -> Void
introduce () = absurd

instance (Applicative f) => Unital (->) () () () (Joker f) where
introduce :: () -> Joker f () ()
introduce = Joker . pure

instance (Alternative f) => Unital (->) Void Void () (Joker f) where
introduce :: () -> Joker f Void Void
introduce () = Joker empty
Expand Down Expand Up @@ -390,10 +458,42 @@ class
) =>
Monoidal cat t1 i1 t2 i2 to io f

instance (Strong p, Semigroupoid p, Category p) => Monoidal (->) (,) () (,) () (,) () (StrongCategory p)

instance Monoidal (->) (,) () (,) () (,) () (,)

instance (Monoid x) => Monoidal (->) (,) () (,) () (,) () ((,,) x)

instance (Monoid x, Monoid y) => Monoidal (->) (,) () (,) () (,) () ((,,,) x y)

instance (Monoid x, Monoid y, Monoid z) => Monoidal (->) (,) () (,) () (,) () ((,,,,) x y z)

instance (Monoid x, Monoid y, Monoid z, Monoid w) => Monoidal (->) (,) () (,) () (,) () ((,,,,,) x y z w)

instance (Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Monoidal (->) (,) () (,) () (,) () ((,,,,,,) x y z w v)

instance Monoidal (->) (,) () (,) () (,) () Arg

instance Monoidal (->) (,) () (,) () (,) () Const

instance (Biapplicative p) => Monoidal (->) (,) () (,) () (,) () (Biap p)

instance Monoidal (->) (,) () (,) () (,) () Tagged

instance (Applicative f) => Monoidal (->) (,) () (,) () (,) () (Clown f)

instance (Biapplicative p) => Monoidal (->) (,) () (,) () (,) () (Flip p)

instance (Applicative g) => Monoidal (->) (,) () (,) () (,) () (Joker g)

instance (Biapplicative p) => Monoidal (->) (,) () (,) () (,) () (WrappedBifunctor p)

instance (Biapplicative f, Biapplicative g) => Monoidal (->) (,) () (,) () (,) () (Product f g)

instance (Applicative f, Biapplicative p) => Monoidal (->) (,) () (,) () (,) () (Tannen f p)

instance (Applicative f, Applicative g, Biapplicative p) => Monoidal (->) (,) () (,) () (,) () (Biff p f g)

instance (Strong p, Semigroupoid p, Category p) => Monoidal (->) (,) () (,) () (,) () (StrongCategory p)

instance Monoidal (->) Either Void Either Void Either Void (,)

instance Monoidal (->) Either Void Either Void Either Void Either
Expand All @@ -406,8 +506,6 @@ instance Monoidal (->) (,) () (,) () (,) () (->)

instance Monoidal (->) Either Void Either Void (,) () (->)

instance (Applicative f) => Monoidal (->) (,) () (,) () (,) () (Joker f)

instance (Alternative f) => Monoidal (->) Either Void Either Void (,) () (Joker f)

instance (Functor f) => Monoidal (->) Either Void Either Void Either Void (Joker f)
Expand Down
Loading