Skip to content

Building Blocks for NLP and Text Generation in TensorFlow 2.x / 1.x

License

Notifications You must be signed in to change notification settings

solversa/tensorflow-nlp

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

  • Code has been run on Google Colab which provides free GPU memory

Contents


Text Classification

└── finch/tensorflow2/text_classification/imdb
	│
	├── data
	│   └── glove.840B.300d.txt          # pretrained embedding, download and put here
	│   └── make_data.ipynb              # step 1. make data and vocab: train.txt, test.txt, word.txt
	│   └── train.txt  		     # incomplete sample, format <label, text> separated by \t 
	│   └── test.txt   		     # incomplete sample, format <label, text> separated by \t
	│   └── train_bt_part1.txt  	     # (back-translated) incomplete sample, format <label, text> separated by \t
	│
	├── vocab
	│   └── word.txt                     # incomplete sample, list of words in vocabulary
	│	
	└── main              
		└── attention_linear.ipynb   # step 2: train and evaluate model
		└── attention_conv.ipynb     # step 2: train and evaluate model
		└── fasttext_unigram.ipynb   # step 2: train and evaluate model
		└── fasttext_bigram.ipynb    # step 2: train and evaluate model
		└── sliced_rnn.ipynb         # step 2: train and evaluate model
		└── sliced_rnn_bt.ipynb      # step 2: train and evaluate model

Text Matching

└── finch/tensorflow2/text_matching/snli
	│
	├── data
	│   └── glove.840B.300d.txt       # pretrained embedding, download and put here
	│   └── download_data.ipynb       # step 1. run this to download snli dataset
	│   └── make_data.ipynb           # step 2. run this to generate train.txt, test.txt, word.txt 
	│   └── train.txt  		  # incomplete sample, format <label, text1, text2> separated by \t 
	│   └── test.txt   		  # incomplete sample, format <label, text1, text2> separated by \t
	│
	├── vocab
	│   └── word.txt                  # incomplete sample, list of words in vocabulary
	│	
	└── main              
		└── dam.ipynb      	  # step 3. train and evaluate model
		└── esim.ipynb      	  # step 3. train and evaluate model
		└── ......

└── finch/tensorflow2/text_matching/chinese
	│
	├── data
	│   └── make_data.ipynb           # step 1. run this to generate char.txt and char.npy
	│   └── train.csv  		  # incomplete sample, format <text1, text2, label> separated by comma 
	│   └── test.csv   		  # incomplete sample, format <text1, text2, label> separated by comma
	│
	├── vocab
	│   └── cc.zh.300.vec             # pretrained embedding, download and put here
	│   └── char.txt                  # incomplete sample, list of chinese characters
	│   └── char.npy                  # saved pretrained embedding matrix for this task
	│	
	└── main              
		└── pyramid.ipynb      	  # step 2. train and evaluate model
		└── esim.ipynb      	  # step 2. train and evaluate model
		└── ......

Topic Modelling


Spoken Language Understanding

└── finch/tensorflow2/spoken_language_understanding/atis
	│
	├── data
	│   └── glove.840B.300d.txt           # pretrained embedding, download and put here
	│   └── make_data.ipynb               # step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── atis.train.w-intent.iob       # incomplete sample, format <text, slot, intent>
	│   └── atis.test.w-intent.iob        # incomplete sample, format <text, slot, intent>
	│
	├── vocab
	│   └── word.txt                      # list of words in vocabulary
	│   └── intent.txt                    # list of intents in vocabulary
	│   └── slot.txt                      # list of slots in vocabulary
	│	
	└── main              
		└── bigru.ipynb               # step 2. train and evaluate model
		└── bigru_self_attn.ipynb     # step 2. train and evaluate model
		└── transformer.ipynb         # step 2. train and evaluate model
		└── transformer_elu.ipynb     # step 2. train and evaluate model

Generative Dialog

└── finch/tensorflow1/free_chat/chinese_qingyun
	│
	├── data
	│   └── raw_data.csv           		# raw data downloaded from external
	│   └── make_data.ipynb           	# step 1. run this to generate vocab {char.txt} and data {train.txt & test.txt}
	│   └── train.txt           		# processed text file generated by {make_data.ipynb}
	│
	├── vocab
	│   └── char.txt                	# list of chars in vocabulary for chinese
	│   └── cc.zh.300.vec			# fastText pretrained embedding downloaded from external
	│   └── char.npy			# chinese characters and their embedding values (300 dim)	
	│	
	└── main
		└── lstm_seq2seq_train.ipynb    # step 2. train and evaluate model
		└── lstm_seq2seq_export.ipynb   # step 3. export model
		└── lstm_seq2seq_infer.ipynb    # step 4. model inference
		└── transformer_train.ipynb     # step 2. train and evaluate model
		└── transformer_export.ipynb    # step 3. export model
		└── transformer_infer.ipynb     # step 4. model inference
└── FreeChatInference
	│
	├── data
	│   └── transformer_export/
	│   └── char.txt
	│   └── libtensorflow-1.14.0.jar
	│   └── tensorflow_jni.dll
	│
	└── src              
	    └── ModelInference.java

Semantic Parsing

└── finch/tensorflow2/semantic_parsing/tree_slu
	│
	├── data
	│   └── glove.840B.300d.txt     	# pretrained embedding, download and put here
	│   └── make_data.ipynb           	# step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── train.tsv   		  	# incomplete sample, format <text, tokenized_text, tree>
	│   └── test.tsv    		  	# incomplete sample, format <text, tokenized_text, tree>
	│
	├── vocab
	│   └── source.txt                	# list of words in vocabulary for source (of seq2seq)
	│   └── target.txt                	# list of words in vocabulary for target (of seq2seq)
	│	
	└── main
		└── lstm_seq2seq_tf_addons.ipynb           # step 2. train and evaluate model
		└── ......
		

Knowledge Graph Inference

└── finch/tensorflow2/knowledge_graph_completion/wn18
	│
	├── data
	│   └── download_data.ipynb       	# step 1. run this to download wn18 dataset
	│   └── make_data.ipynb           	# step 2. run this to generate vocabulary: entity.txt, relation.txt
	│   └── wn18  		          	# wn18 folder (will be auto created by download_data.ipynb)
	│   	└── train.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│   	└── valid.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t 
	│   	└── test.txt   		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│
	├── vocab
	│   └── entity.txt                  	# incomplete sample, list of entities in vocabulary
	│   └── relation.txt                	# incomplete sample, list of relations in vocabulary
	│	
	└── main              
		└── distmult_1-N.ipynb    	# step 3. train and evaluate model

Knowledge Graph Tools


Question Answering

└── finch/tensorflow1/question_answering/babi
	│
	├── data
	│   └── make_data.ipynb           		# step 1. run this to generate vocabulary: word.txt 
	│   └── qa5_three-arg-relations_train.txt       # one complete example of babi dataset
	│   └── qa5_three-arg-relations_test.txt	# one complete example of babi dataset
	│
	├── vocab
	│   └── word.txt                  		# complete list of words in vocabulary
	│	
	└── main              
		└── dmn_train.ipynb
		└── dmn_serve.ipynb
		└── attn_gru_cell.py

Text Processing Tools


Recommender System

└── finch/tensorflow1/recommender/movielens
	│
	├── data
	│   └── make_data.ipynb           		# run this to generate vocabulary
	│
	├── vocab
	│   └── user_job.txt
	│   └── user_id.txt
	│   └── user_gender.txt
	│   └── user_age.txt
	│   └── movie_types.txt
	│   └── movie_title.txt
	│   └── movie_id.txt
	│	
	└── main              
		└── dnn_softmax.ipynb
		└── ......

Multi-turn Dialogue Rewriting

└── finch/tensorflow1/multi_turn_rewrite/chinese/
	│
	├── data
	│   └── make_data.ipynb         # run this to generate vocab, split train & test data, make pretrained embedding
	│   └── corpus.txt		# original data downloaded from external
	│   └── train_pos.txt		# processed positive training data after {make_data.ipynb}
	│   └── train_neg.txt		# processed negative training data after {make_data.ipynb}
	│   └── test_pos.txt		# processed positive testing data after {make_data.ipynb}
	│   └── test_neg.txt		# processed negative testing data after {make_data.ipynb}
	│
	├── vocab
	│   └── cc.zh.300.vec		# fastText pretrained embedding downloaded from external
	│   └── char.npy		# chinese characters and their embedding values (300 dim)	
	│   └── char.txt		# list of chinese characters used in this project 
	│	
	└── main              
		└── baseline_lstm_train.ipynb
		└── baseline_lstm_export.ipynb
		└── baseline_lstm_predict.ipynb
└── MultiDialogInference
	│
	├── data
	│   └── baseline_lstm_export/
	│   └── char.txt
	│   └── libtensorflow-1.14.0.jar
	│   └── tensorflow_jni.dll
	│
	└── src              
	    └── ModelInference.java

Knowledge Base Question Answering

About

Building Blocks for NLP and Text Generation in TensorFlow 2.x / 1.x

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.2%
  • Python 1.1%
  • Other 0.7%